These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effect of female sex hormones on the developmental cycle of Chlamydia abortus compared to a penicillin-induced model of persistent infection. Álvarez D; Caro MR; Buendía AJ; Schnee C; Ortega N; Murcia-Belmonte A; Salinas J BMC Vet Res; 2019 Jul; 15(1):259. PubMed ID: 31340824 [TBL] [Abstract][Full Text] [Related]
5. Microscopic Analysis of the Chlamydia abortus Inclusion and Its Interaction with Those Formed by Other Chlamydial Species. Garvin LE; DeBoer AG; Carrell SJ; Wang X; Rockey DD Infect Immun; 2022 Mar; 90(3):e0049921. PubMed ID: 35099268 [TBL] [Abstract][Full Text] [Related]
6. Mixed infections with Chlamydia and porcine epidemic diarrhea virus - a new in vitro model of chlamydial persistence. Borel N; Dumrese C; Ziegler U; Schifferli A; Kaiser C; Pospischil A BMC Microbiol; 2010 Jul; 10():201. PubMed ID: 20663197 [TBL] [Abstract][Full Text] [Related]
7. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
8. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus. Kalmar I; Berndt A; Yin L; Chiers K; Sachse K; Vanrompay D Vet Immunol Immunopathol; 2015 Mar; 164(1-2):30-9. PubMed ID: 25638671 [TBL] [Abstract][Full Text] [Related]
9. Virulence-related comparative transcriptomics of infectious and non-infectious chlamydial particles. Beder T; Saluz HP BMC Genomics; 2018 Aug; 19(1):575. PubMed ID: 30068313 [TBL] [Abstract][Full Text] [Related]
10. Initial Characterization of the Two ClpP Paralogs of Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899 [TBL] [Abstract][Full Text] [Related]
11. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811 [TBL] [Abstract][Full Text] [Related]
12. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. Matsumoto A; Bessho H; Uehira K; Suda T J Electron Microsc (Tokyo); 1991 Oct; 40(5):356-63. PubMed ID: 1666645 [TBL] [Abstract][Full Text] [Related]
13. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division. Chiarelli TJ; Grieshaber NA; Appa C; Grieshaber SS mSystems; 2023 Apr; 8(2):e0005323. PubMed ID: 36927072 [TBL] [Abstract][Full Text] [Related]
14. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. Skilton RJ; Cutcliffen LT; Barlow D; Wang Y; Salim O; Lambden PR; Clarke IN PLoS One; 2009 Nov; 4(11):e7723. PubMed ID: 19893744 [TBL] [Abstract][Full Text] [Related]
15. Natural Products for the Treatment of Chlamydiaceae Infections. Brown MA; Potroz MG; Teh SW; Cho NJ Microorganisms; 2016 Oct; 4(4):. PubMed ID: 27754466 [TBL] [Abstract][Full Text] [Related]
16. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
17. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. Ford C; Nans A; Boucrot E; Hayward RD PLoS Pathog; 2018 May; 14(5):e1007051. PubMed ID: 29727463 [TBL] [Abstract][Full Text] [Related]