These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24522501)

  • 1. [Further experiments concerning the influence of light on the circadian rhythm of Phaseolus multiflorus].
    Bünning E; Moser I
    Planta; 1967 Jun; 77(2):99-107. PubMed ID: 24522501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of light on cone disk shedding in the lizard, Sceloporus occidentalis.
    Bernstein SA; Breding DJ; Fisher SK
    J Cell Biol; 1984 Aug; 99(2):379-89. PubMed ID: 6746734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of light on the development of the circadian rhythm of motor activity in the mouse.
    Canal-Corretger MM; Vilaplana J; Cambras T; Díez-Noguera A
    Chronobiol Int; 2001 Jul; 18(4):683-96. PubMed ID: 11587090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of light on the circadian activity rhythm of Djungarian hamsters (Phodopus sungorus) with delayed activity onset.
    Schottner K; Weinert D
    Chronobiol Int; 2010 Jan; 27(1):95-110. PubMed ID: 20205560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel,
    Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M
    Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.
    Scarbrough K; Turek FW
    Brain Res; 1996 Oct; 736(1-2):251-9. PubMed ID: 8930331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of light on circadian pacemaker development. II. Responses to light.
    Page TL; Barrett RK
    J Comp Physiol A; 1989 Apr; 165(1):51-9. PubMed ID: 2585359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced phase shifts of circadian leaf movements of phaseolus: comparison with the effects of potassium and of ethyl alcohol.
    Bünning E; Moser I
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12 Pt 1-2):3387-9. PubMed ID: 16592119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nocturnal illumination does not necessarily stimulate the photoperiodic response, despite mimicking the effects of constant light on the circadian system in the male Syrian hamster.
    Ferraro JS; Krum HN; Bartke A; Wassmer GT; Chandrashekar V; Michael SD; Sulzman FM
    Physiol Behav; 1990 Mar; 47(3):577-88. PubMed ID: 2113674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Response-curves of the circadian rhythm in Phaseolus].
    Bünning E; Moser I
    Planta; 1966 Jun; 69(2):101-10. PubMed ID: 24557842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius).
    El Allali K; Achaâban MR; Bothorel B; Piro M; Bouâouda H; El Allouchi M; Ouassat M; Malan A; Pévet P
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R1044-52. PubMed ID: 23485867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.
    Ono D; Honma S; Honma K
    PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase and period responses to short light pulses in a wild diurnal rodent, Funambulus pennanti.
    Kumar D; Singaravel M
    Chronobiol Int; 2014 Apr; 31(3):320-7. PubMed ID: 24180638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of light, dark or altered circadian cycle on the lifespan of the rotifer Asplanchna brightwelli.
    Sawada M; Enesco HE
    Exp Gerontol; 1984; 19(5):335-43. PubMed ID: 6510478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Period-lengthening and phase-shifting of the circadian rhythm of Phaseolus coccineus L. by theorphylline].
    Mayer W; Gruner R; Strubel H
    Planta; 1975 Jan; 125(2):141-8. PubMed ID: 24435338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-running rhythms and light- and dark-pulse phase response curves for diurnal Octodon degus (Rodentia).
    Lee TM; Labyak SE
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R278-86. PubMed ID: 9249561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro resetting of the circadian clock in the Aplysia eye. III. Location of photoreceptors that signal continuous light to continuous darkness.
    Prichard RG; Lickey ME
    J Neurosci; 1981 Aug; 1(8):846-8. PubMed ID: 7346589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.