BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 24522808)

  • 1. Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition.
    Rieppo L; Saarakkala S; Jurvelin JS; Rieppo J
    J Biomed Opt; 2014 Feb; 19(2):027003. PubMed ID: 24522808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.
    Hanifi A; McCarthy H; Roberts S; Pleshko N
    PLoS One; 2013; 8(5):e64822. PubMed ID: 23717662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression.
    Yin J; Xia Y; Lu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():90-6. PubMed ID: 22197357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.
    Palukuru UP; McGoverin CM; Pleshko N
    Matrix Biol; 2014 Sep; 38():3-11. PubMed ID: 25083813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy.
    Baykal D; Irrechukwu O; Lin PC; Fritton K; Spencer RG; Pleshko N
    Appl Spectrosc; 2010 Oct; 64(10):1160-6. PubMed ID: 20925987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.
    Cheheltani R; McGoverin CM; Rao J; Vorp DA; Kiani MF; Pleshko N
    Analyst; 2014 Jun; 139(12):3039-47. PubMed ID: 24761431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping proteoglycan-bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis.
    Reiter DA; Roque RA; Lin PC; Irrechukwu O; Doty S; Longo DL; Pleshko N; Spencer RG
    Magn Reson Med; 2011 Feb; 65(2):377-84. PubMed ID: 21264931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the Near-Infrared Spectrum of Articular Cartilage.
    Afara IO; Oloyede A
    Cartilage; 2021 Dec; 13(1_suppl):729S-737S. PubMed ID: 34643470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-dependent anisotropies of amides and sugar in perpendicular and parallel sections of articular cartilage by Fourier transform infrared imaging.
    Xia Y; Mittelstaedt D; Ramakrishnan N; Szarko M; Bidthanapally A
    Microsc Res Tech; 2011 Feb; 74(2):122-32. PubMed ID: 21274999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.
    Hanifi A; Bi X; Yang X; Kavukcuoglu B; Lin PC; DiCarlo E; Spencer RG; Bostrom MP; Pleshko N
    Am J Sports Med; 2012 Dec; 40(12):2853-61. PubMed ID: 23108637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy.
    Afara IO; Moody H; Singh S; Prasadam I; Oloyede A
    Biomed Opt Express; 2015 Jan; 6(1):144-54. PubMed ID: 25657883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy.
    O'Brien MP; Penmatsa M; Palukuru U; West P; Yang X; Bostrom MP; Freeman T; Pleshko N
    Cartilage; 2015 Jul; 6(3):174-84. PubMed ID: 26175863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier-transform infrared spectroscopic imaging of articular cartilage and biomaterials: A review.
    Ramakrishnan N; Xia Y
    Trends Appl Spectrosc; 2013; 10():1-23. PubMed ID: 31693014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo.
    Unal M; Akkus O
    J Biomed Opt; 2018 Jan; 23(1):1-11. PubMed ID: 29374405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
    Mankar R; Gajjela CC; Bueso-Ramos CE; Yin CC; Mayerich D; Reddy RK
    Appl Spectrosc; 2022 Apr; 76(4):508-518. PubMed ID: 35236126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.
    Khanarian NT; Boushell MK; Spalazzi JP; Pleshko N; Boskey AL; Lu HH
    J Bone Miner Res; 2014 Dec; 29(12):2643-52. PubMed ID: 24839262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in infrared spectroscopic data of connective tissues in transflectance and transmittance modes.
    Hanifi A; McGoverin C; Ou YT; Safadi F; Spencer RG; Pleshko N
    Anal Chim Acta; 2013 May; 779():41-9. PubMed ID: 23663670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue discrimination in head and neck cancer using image fusion of IR and optical microscopy.
    Al Jedani S; Smith CI; Ingham J; Whitley CA; Ellis BG; Triantafyllou A; Gunning PJ; Gardner P; Risk JM; Shaw RJ; Weightman P; Barrett SD
    Analyst; 2023 Aug; 148(17):4189-4194. PubMed ID: 37529901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Study of Morphometric and Fourier Transform Infrared Spectroscopy Analyses of the Collagen Fibers in the Repair Process of Cutaneous Lesions.
    Nogueira VC; Raniero L; Costa GB; de Freitas Coelho NP; Miranda FC; Arisawa EÂ
    Adv Wound Care (New Rochelle); 2016 Feb; 5(2):55-64. PubMed ID: 26862463
    [No Abstract]   [Full Text] [Related]  

  • 20. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications.
    Fan X; Sun AR; Young RSE; Afara IO; Hamilton BR; Ong LJY; Crawford R; Prasadam I
    Bone Res; 2024 Feb; 12(1):7. PubMed ID: 38311627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.