BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 24522916)

  • 21. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission.
    Liu Q; Zhou B; Ma W; Bawa B; Ma J; Wang W; Lang Y; Lyoo Y; Halpin RA; Lin X; Stockwell TB; Webby R; Wentworth DE; Richt JA
    J Virol; 2014 Jul; 88(14):8153-65. PubMed ID: 24807722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.
    Yum J; Ku KB; Kim HS; Seo SH
    Viral Immunol; 2015 Dec; 28(10):590-9. PubMed ID: 26421365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells.
    Heindl MR; Rupp A-L; Schwerdtner M; Bestle D; Harbig A; De Rocher A; Schmacke LC; Staker B; Steinmetzer T; Stein DA; Moulton HM; Böttcher-Friebertshäuser E
    J Virol; 2024 Apr; 98(4):e0010224. PubMed ID: 38470058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human H7N9 and H5N1 influenza viruses differ in induction of cytokines and tissue tropism.
    Meliopoulos VA; Karlsson EA; Kercher L; Cline T; Freiden P; Duan S; Vogel P; Webby RJ; Guan Y; Peiris M; Thomas PG; Schultz-Cherry S
    J Virol; 2014 Nov; 88(22):12982-91. PubMed ID: 25210188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3.
    Hensen L; Matrosovich T; Roth K; Klenk HD; Matrosovich M
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human matriptase/ST 14 proteolytically cleaves H7N9 hemagglutinin and facilitates the activation of influenza A/Shanghai/2/2013 virus in cell culture.
    Whittaker GR; Straus MR
    Influenza Other Respir Viruses; 2020 Mar; 14(2):189-195. PubMed ID: 31820577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The virulence modulator PA-X protein has minor effect on the pathogenicity of the highly pathogenic H7N9 avian influenza virus in mice.
    Kong M; Chen K; Zeng Z; Wang X; Gu M; Hu Z; Jiao X; Hu J; Liu X
    Vet Microbiol; 2021 Apr; 255():109019. PubMed ID: 33676094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice.
    Wang Y; Wu J; Xue C; Wu Z; Lin Y; Wei Y; Wei X; Qin J; Zhang Y; Wen Z; Chen L; Liu GD; Cao Y
    Antiviral Res; 2017 Jul; 143():97-105. PubMed ID: 28408133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors.
    Böttcher-Friebertshäuser E; Freuer C; Sielaff F; Schmidt S; Eickmann M; Uhlendorff J; Steinmetzer T; Klenk HD; Garten W
    J Virol; 2010 Jun; 84(11):5605-14. PubMed ID: 20237084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.
    Qi W; Jia W; Liu D; Li J; Bi Y; Xie S; Li B; Hu T; Du Y; Xing L; Zhang J; Zhang F; Wei X; Eden JS; Li H; Tian H; Li W; Su G; Lao G; Xu C; Xu B; Liu W; Zhang G; Ren T; Holmes EC; Cui J; Shi W; Gao GF; Liao M
    J Virol; 2018 Jan; 92(2):. PubMed ID: 29070694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Pathogenic H5N1 and Novel H7N9 Influenza A Viruses Induce More Profound Proteomic Host Responses than Seasonal and Pandemic H1N1 Strains.
    Simon PF; McCorrister S; Hu P; Chong P; Silaghi A; Westmacott G; Coombs KM; Kobasa D
    J Proteome Res; 2015 Nov; 14(11):4511-23. PubMed ID: 26381135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1) 2009 influenza A viruses.
    Seidel N; Sauerbrei A; Wutzler P; Schmidtke M
    PLoS One; 2014; 9(8):e104233. PubMed ID: 25162520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human H7N9 influenza A viruses replicate in swine respiratory tissue explants.
    Jones JC; Baranovich T; Zaraket H; Guan Y; Shu Y; Webby RJ; Webster RG
    J Virol; 2013 Nov; 87(22):12496-8. PubMed ID: 24027310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice.
    Chan M; Leung A; Hisanaga T; Pickering B; Griffin BD; Vendramelli R; Tailor N; Wong G; Bi Y; Babiuk S; Berhane Y; Kobasa D
    Viruses; 2020 Jan; 12(1):. PubMed ID: 31948040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews.
    Wang Q; Zeng X; Tang S; Lan L; Wang X; Lai Z; Liu Z; Hou X; Gao L; Yun C; Zhang Z; Leng J; Fan X
    Virus Res; 2023 Jan; 324():199027. PubMed ID: 36543317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Airway proteases: an emerging drug target for influenza and other respiratory virus infections.
    Laporte M; Naesens L
    Curr Opin Virol; 2017 Jun; 24():16-24. PubMed ID: 28414992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs.
    Ma J; Shen H; Liu Q; Bawa B; Qi W; Duff M; Lang Y; Lee J; Yu H; Bai J; Tong G; Hesse RA; Richt JA; Ma W
    J Virol; 2015 Mar; 89(5):2831-41. PubMed ID: 25540372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.
    Josset L; Zeng H; Kelly SM; Tumpey TM; Katze MG
    mBio; 2014 Feb; 5(1):e01102-13. PubMed ID: 24496798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region.
    Sakai K; Sekizuka T; Ami Y; Nakajima N; Kitazawa M; Sato Y; Nakajima K; Anraku M; Kubota T; Komase K; Takehara K; Hasegawa H; Odagiri T; Tashiro M; Kuroda M; Takeda M
    J Virol; 2015 May; 89(9):5154-8. PubMed ID: 25673722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human Monoclonal Antibody 81.39a Effectively Neutralizes Emerging Influenza A Viruses of Group 1 and 2 Hemagglutinins.
    Marjuki H; Mishin VP; Chai N; Tan MW; Newton EM; Tegeris J; Erlandson K; Willis M; Jones J; Davis T; Stevens J; Gubareva LV
    J Virol; 2016 Dec; 90(23):10446-10458. PubMed ID: 27630240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.