These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
882 related articles for article (PubMed ID: 24522958)
1. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. Sahu SC; Zheng J; Graham L; Chen L; Ihrie J; Yourick JJ; Sprando RL J Appl Toxicol; 2014 Nov; 34(11):1155-66. PubMed ID: 24522958 [TBL] [Abstract][Full Text] [Related]
2. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation. Sahu SC; Roy S; Zheng J; Yourick JJ; Sprando RL J Appl Toxicol; 2014 Nov; 34(11):1200-8. PubMed ID: 24909674 [TBL] [Abstract][Full Text] [Related]
3. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric in vitro micronucleus assay. Sahu SC; Njoroge J; Bryce SM; Yourick JJ; Sprando RL J Appl Toxicol; 2014 Nov; 34(11):1226-34. PubMed ID: 25224830 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells. Sahu SC; Njoroge J; Bryce SM; Zheng J; Ihrie J J Appl Toxicol; 2016 Apr; 36(4):521-31. PubMed ID: 26732652 [TBL] [Abstract][Full Text] [Related]
5. Contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by the cytokinesis-block micronucleus assay. Sahu SC; Roy S; Zheng J; Ihrie J J Appl Toxicol; 2016 Apr; 36(4):532-42. PubMed ID: 26813850 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Xin L; Wang J; Fan G; Che B; Wu Y; Guo S; Tong J Environ Toxicol; 2016 Dec; 31(12):1691-1699. PubMed ID: 26172371 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. Xue Y; Zhang T; Zhang B; Gong F; Huang Y; Tang M J Appl Toxicol; 2016 Mar; 36(3):352-60. PubMed ID: 26198703 [TBL] [Abstract][Full Text] [Related]
8. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
9. Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Xue Y; Wang J; Huang Y; Gao X; Kong L; Zhang T; Tang M Hum Exp Toxicol; 2018 Dec; 37(12):1293-1309. PubMed ID: 29658330 [TBL] [Abstract][Full Text] [Related]
10. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Jain J; Arora S; Rajwade JM; Omray P; Khandelwal S; Paknikar KM Mol Pharm; 2009; 6(5):1388-401. PubMed ID: 19473014 [TBL] [Abstract][Full Text] [Related]
11. Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Wang J; Che B; Zhang LW; Dong G; Luo Q; Xin L J Appl Toxicol; 2017 Apr; 37(4):495-501. PubMed ID: 27601426 [TBL] [Abstract][Full Text] [Related]
12. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture. Faedmaleki F; Shirazi FH; Ejtemaeimehr S; Anjarani S; Salarian AA; Ahmadi Ashtiani H; Rastegar H Acta Med Iran; 2016 Feb; 54(2):85-95. PubMed ID: 26997594 [TBL] [Abstract][Full Text] [Related]
13. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Song Y; Guan R; Lyu F; Kang T; Wu Y; Chen X Mutat Res; 2014 Nov; 769():113-8. PubMed ID: 25771730 [TBL] [Abstract][Full Text] [Related]
15. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. Sahu SC; Zheng J; Yourick JJ; Sprando RL; Gao X J Appl Toxicol; 2015 Oct; 35(10):1160-8. PubMed ID: 26014281 [TBL] [Abstract][Full Text] [Related]
16. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles. Xin L; Wang J; Zhang LW; Che B; Dong G; Fan G; Cheng K Toxicol Appl Pharmacol; 2016 Aug; 304():9-17. PubMed ID: 27211842 [TBL] [Abstract][Full Text] [Related]
17. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. Kaiser JP; Roesslein M; Diener L; Wichser A; Nowack B; Wick P J Nanobiotechnology; 2017 Jan; 15(1):5. PubMed ID: 28061858 [TBL] [Abstract][Full Text] [Related]
18. Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. Wang X; Li T; Su X; Li J; Li W; Gan J; Wu T; Kong L; Zhang T; Tang M; Xue Y J Appl Toxicol; 2019 Jun; 39(6):908-918. PubMed ID: 30701584 [TBL] [Abstract][Full Text] [Related]
19. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Hunt PR; Marquis BJ; Tyner KM; Conklin S; Olejnik N; Nelson BC; Sprando RL J Appl Toxicol; 2013 Oct; 33(10):1131-42. PubMed ID: 23636779 [TBL] [Abstract][Full Text] [Related]