BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24523049)

  • 1. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.
    Bresnen A; Duong TQ
    Magn Reson Med; 2015 Feb; 73(2):726-30. PubMed ID: 24523049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Wang CY; Liu Y; Huang S; Griswold MA; Seiberlich N; Yu X
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28915341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
    Clarke WT; Robson MD; Neubauer S; Rodgers CT
    Magn Reson Med; 2017 Jul; 78(1):20-32. PubMed ID: 27579566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP production rate via creatine kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method.
    Xiong Q; Du F; Zhu X; Zhang P; Suntharalingam P; Ippolito J; Kamdar FD; Chen W; Zhang J
    Circ Res; 2011 Mar; 108(6):653-63. PubMed ID: 21293002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-network classification of cardiac disease from
    Solaiyappan M; Weiss RG; Bottomley PA
    J Cardiovasc Magn Reson; 2019 Aug; 21(1):49. PubMed ID: 31401975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.
    Jeong EK; Sung YH; Kim SE; Zuo C; Shi X; Mellon EA; Renshaw PF
    NMR Biomed; 2011 Aug; 24(7):765-70. PubMed ID: 21834000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.
    Bashir A; Gropler R
    NMR Biomed; 2014 Jun; 27(6):663-71. PubMed ID: 24706347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization.
    Bashir A; Zhang J; Denney TS
    PLoS One; 2020; 15(3):e0229933. PubMed ID: 32191723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts.
    Schär M; Gabr RE; El-Sharkawy AM; Steinberg A; Bottomley PA; Weiss RG
    J Cardiovasc Magn Reson; 2015 Aug; 17(1):70. PubMed ID: 26253320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy.
    Du F; Cooper AJ; Thida T; Sehovic S; Lukas SE; Cohen BM; Zhang X; Ongür D
    JAMA Psychiatry; 2014 Jan; 71(1):19-27. PubMed ID: 24196348
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Chen C; Stephenson MC; Peters A; Morris PG; Francis ST; Gowland PA
    Magn Reson Med; 2018 Jan; 79(1):22-30. PubMed ID: 28303591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study.
    Bottomley PA; Wu KC; Gerstenblith G; Schulman SP; Steinberg A; Weiss RG
    Circulation; 2009 Apr; 119(14):1918-24. PubMed ID: 19332463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of isoflurane anesthesia on hyperpolarized (13)C metabolic measurements in rat brain.
    Josan S; Hurd R; Billingsley K; Senadheera L; Park JM; Yen YF; Pfefferbaum A; Spielman D; Mayer D
    Magn Reson Med; 2013 Oct; 70(4):1117-24. PubMed ID: 23086864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo.
    Bottomley PA; Ouwerkerk R; Lee RF; Weiss RG
    Magn Reson Med; 2002 May; 47(5):850-63. PubMed ID: 11979563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relayed magnetization transfer from nuclear Overhauser effect and chemical exchange observed by in vivo ³¹P MRS in rat brain.
    Du F; Zhang Y; Chen W
    Magn Reson Imaging; 2012 Jun; 30(5):716-21. PubMed ID: 22459438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: a 31P magnetization transfer study.
    Chen W; Zhu XH; Adriany G; Ugurbil K
    Magn Reson Med; 1997 Oct; 38(4):551-7. PubMed ID: 9324321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy.
    Zahler R; Ingwall JS
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1022-8. PubMed ID: 1566885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.