These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24523354)

  • 1. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning.
    Diamond A; Holland OE
    Bioinspir Biomim; 2014 Mar; 9(1):016015. PubMed ID: 24523354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints.
    Annunziata S; Paskarbeit J; Schneider A
    Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoulder complex linkage mechanism for humanlike musculoskeletal robot arms.
    Ikemoto S; Kimoto Y; Hosoda K
    Bioinspir Biomim; 2015 Nov; 10(6):066009. PubMed ID: 26539726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a biped robot actuated by pneumatic artificial muscles.
    Liu Y; Zang X; Liu X; Wang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.
    Kent BA; Engeberg ED
    Bioinspir Biomim; 2014 Nov; 9(4):046008. PubMed ID: 25378229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretch reflex improves rolling stability during hopping of a decerebrate biped system.
    Rosendo A; Liu X; Shimizu M; Hosoda K
    Bioinspir Biomim; 2015 Jan; 10(1):016008. PubMed ID: 25599138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simplified Spinal-Like Controller Facilitates Muscle Synergies and Robust Reaching Motions.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):77-87. PubMed ID: 23996578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso.
    Wittmeier S; Alessandro C; Bascarevic N; Dalamagkidis K; Devereux D; Diamond A; Jäntsch M; Jovanovic K; Knight R; Marques HG; Milosavljevic P; Mitra B; Svetozarevic B; Potkonjak V; Pfeifer R; Knoll A; Holland O
    Artif Life; 2013; 19(1):171-93. PubMed ID: 23186343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contextual action recognition and target localization with an active allocation of attention on a humanoid robot.
    Ognibene D; Chinellato E; Sarabia M; Demiris Y
    Bioinspir Biomim; 2013 Sep; 8(3):035002. PubMed ID: 23981534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biologically inspired meta-control navigation system for the Psikharpax rat robot.
    Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M
    Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to make an autonomous robot as a partner with humans: design approach versus emergent approach.
    Fujita M
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):21-47. PubMed ID: 17148048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of a multi-articulated robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2013 Mar; 8(1):016009. PubMed ID: 23385471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.