These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24523547)

  • 1. Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period.
    Nahmani M; Turrigiano GG
    J Neurosci; 2014 Feb; 34(7):2571-82. PubMed ID: 24523547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period.
    Lefort S; Gray AC; Turrigiano GG
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):E4540-7. PubMed ID: 24191045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of GABAA-Mediated Inhibition and Functional Assortment of Synapses onto Individual Layer 4 Neurons in Regulating Plasticity Expression in Visual Cortex.
    Saez I; Friedlander MJ
    PLoS One; 2016; 11(2):e0147642. PubMed ID: 26841221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex.
    Sarihi A; Mirnajafi-Zadeh J; Jiang B; Sohya K; Safari MS; Arami MK; Yanagawa Y; Tsumoto T
    J Neurosci; 2012 Sep; 32(38):13189-99. PubMed ID: 22993435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability Controls the Timing of the Critical Period.
    Gu Y; Tran T; Murase S; Borrell A; Kirkwood A; Quinlan EM
    J Neurosci; 2016 Oct; 36(40):10285-10295. PubMed ID: 27707966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balance of inhibitory and excitatory synaptic activity is altered in fast-spiking interneurons in experimental cortical dysplasia.
    Zhou FW; Chen HX; Roper SN
    J Neurophysiol; 2009 Oct; 102(4):2514-25. PubMed ID: 19692507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype.
    Ma Y; Hu H; Agmon A
    J Neurosci; 2012 Jan; 32(3):983-8. PubMed ID: 22262896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex.
    Xiang Z; Huguenard JR; Prince DA
    J Neurophysiol; 2002 Aug; 88(2):740-50. PubMed ID: 12163526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
    Sun QQ
    J Neurophysiol; 2009 Nov; 102(5):2955-73. PubMed ID: 19741102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
    Chen XJ; Rasch MJ; Chen G; Ye CQ; Wu S; Zhang XH
    J Neurosci; 2014 Feb; 34(8):2940-55. PubMed ID: 24553935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebound potentiation of inhibition in juvenile visual cortex requires vision-induced BDNF expression.
    Gao M; Maynard KR; Chokshi V; Song L; Jacobs C; Wang H; Tran T; Martinowich K; Lee HK
    J Neurosci; 2014 Aug; 34(32):10770-9. PubMed ID: 25100608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex.
    Yoshimura Y; Ohmura T; Komatsu Y
    J Neurosci; 2003 Jul; 23(16):6557-66. PubMed ID: 12878697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period.
    Ma WP; Li YT; Tao HW
    J Neurosci; 2013 Jul; 33(27):11276-80. PubMed ID: 23825430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical period for inhibitory plasticity in rodent binocular V1.
    Maffei A; Lambo ME; Turrigiano GG
    J Neurosci; 2010 Mar; 30(9):3304-9. PubMed ID: 20203190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
    Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK
    J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.