These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24523694)

  • 1. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
    Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2014; 8():3. PubMed ID: 24523694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired step-climbing in a hexapod robot.
    Chou YC; Yu WS; Huang KJ; Lin PC
    Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot.
    Chen Y; Grezmak JE; Graf NM; Daltorio KA
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability.
    Huang H; Feng Y; Yang X; Yang L; Shen Y
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Wheel-Legged Hexapod Robot.
    Ni Y; Li L; Qiu J; Sun Y; Qin G; Han Q; Ji A
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Interlimb Coordination Mechanism for Hexapod Locomotion Based on Active Load Sensing.
    Fukuhara A; Suda W; Kano T; Kobayashi R; Ishiguro A
    Front Neurorobot; 2022; 16():645683. PubMed ID: 35211001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning.
    Xiong X; Worgotter F; Manoonpong P
    IEEE Trans Cybern; 2016 Nov; 46(11):2521-2534. PubMed ID: 26441437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walknet, a bio-inspired controller for hexapod walking.
    Schilling M; Hoinville T; Schmitz J; Cruse H
    Biol Cybern; 2013 Aug; 107(4):397-419. PubMed ID: 23824506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 17. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning physical characteristics like animals for legged robots.
    Xu P; Ding L; Li Z; Yang H; Wang Z; Gao H; Zhou R; Su Y; Deng Z; Huang Y
    Natl Sci Rev; 2023 May; 10(5):nwad045. PubMed ID: 37056443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
    Dürr V; Schmitz J; Cruse H
    Arthropod Struct Dev; 2004 Jul; 33(3):237-50. PubMed ID: 18089037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro.
    De Luca A; Muratore L; Raghavan VS; Antonucci D; Tsagarakis NG
    Front Robot AI; 2021; 8():721001. PubMed ID: 34869611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.