BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24523897)

  • 1. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.
    Jacobi A; Schmalz A; Bareyre FM
    PLoS One; 2014; 9(2):e88449. PubMed ID: 24523897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury.
    Lang C; Guo X; Kerschensteiner M; Bareyre FM
    PLoS One; 2012; 7(1):e30461. PubMed ID: 22291960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of propriospinal interneurons in recovery from spinal cord injury.
    Flynn JR; Graham BA; Galea MP; Callister RJ
    Neuropharmacology; 2011 Apr; 60(5):809-22. PubMed ID: 21251920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury.
    Aljović A; Jacobi A; Marcantoni M; Kagerer F; Loy K; Kendirli A; Bräutigam J; Fabbio L; Van Steenbergen V; Pleśniar K; Kerschensteiner M; Bareyre FM
    EMBO Mol Med; 2023 Feb; 15(2):e16111. PubMed ID: 36601738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury.
    Filli L; Engmann AK; Zörner B; Weinmann O; Moraitis T; Gullo M; Kasper H; Schneider R; Schwab ME
    J Neurosci; 2014 Oct; 34(40):13399-410. PubMed ID: 25274818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord.
    Jacobi A; Loy K; Schmalz AM; Hellsten M; Umemori H; Kerschensteiner M; Bareyre FM
    EMBO J; 2015 May; 34(9):1231-43. PubMed ID: 25766255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of the supraspinal collaterals of cord-projection neurons following upper spinal axonal injury.
    Wang YJ; Ho HW; Tseng GF
    J Neurotrauma; 2000 Mar; 17(3):231-41. PubMed ID: 10757328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olig2-Induced Semaphorin Expression Drives Corticospinal Axon Retraction After Spinal Cord Injury.
    Ueno M; Nakamura Y; Nakagawa H; Niehaus JK; Maezawa M; Gu Z; Kumanogoh A; Takebayashi H; Lu QR; Takada M; Yoshida Y
    Cereb Cortex; 2020 Oct; 30(11):5702-5716. PubMed ID: 32564090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Axon Guidance Molecules in Ascending and Descending Paths in Spinal Cord Regeneration.
    Vartak A; Goyal D; Kumar H
    Neuroscience; 2023 Nov; 533():36-52. PubMed ID: 37704063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease.
    Zholudeva LV; Abraira VE; Satkunendrarajah K; McDevitt TC; Goulding MD; Magnuson DSK; Lane MA
    J Neurosci; 2021 Feb; 41(5):845-854. PubMed ID: 33472820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations.
    Chen B; Li Y; Yu B; Zhang Z; Brommer B; Williams PR; Liu Y; Hegarty SV; Zhou S; Zhu J; Guo H; Lu Y; Zhang Y; Gu X; He Z
    Cell; 2018 Jul; 174(3):521-535.e13. PubMed ID: 30033363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review.
    Hunt D; Coffin RS; Anderson PN
    J Neurocytol; 2002 Feb; 31(2):93-120. PubMed ID: 12815233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury.
    Nakanishi T; Fujita Y; Yamashita T
    Cell Death Dis; 2019 Jan; 10(2):67. PubMed ID: 30683854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of somatosensory detour circuits mediates functional recovery following dorsal column injury.
    Granier C; Schwarting J; Fourli E; Laage-Gaupp F; Hennrich AA; Schmalz A; Jacobi A; Wesolowski M; Conzelmann KK; Bareyre FM
    Sci Rep; 2020 Jul; 10(1):10953. PubMed ID: 32616790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury.
    Swieck K; Conta-Steencken A; Middleton FA; Siebert JR; Osterhout DJ; Stelzner DJ
    BMC Neurosci; 2019 Mar; 20(1):10. PubMed ID: 30885135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord.
    Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG
    J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.