These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24523908)

  • 1. Methodology for modeling the microbial contamination of air filters.
    Joe YH; Yoon KY; Hwang J
    PLoS One; 2014; 9(2):e88514. PubMed ID: 24523908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative filter forensics with residential HVAC filters to assess indoor concentrations.
    Givehchi R; Maestre JP; Bi C; Wylie D; Xu Y; Kinney KA; Siegel JA
    Indoor Air; 2019 May; 29(3):390-402. PubMed ID: 30624800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative filter forensics for indoor particle sampling.
    Haaland D; Siegel JA
    Indoor Air; 2017 Mar; 27(2):364-376. PubMed ID: 27385357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dust and microbial filtration performance of regular and antimicrobial HVAC filters in realistic conditions.
    Joubert A; Abd Ali SAZ; Frossard M; Andrès Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39907-39919. PubMed ID: 33765264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical collection efficiency of filter materials for bacteria and viruses.
    Burton NC; Grinshpun SA; Reponen T
    Ann Occup Hyg; 2007 Mar; 51(2):143-51. PubMed ID: 17041245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles.
    Jeong SB; Heo KJ; Lee BU
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31892112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber.
    Kim SY; Kim M; Lee S; Lee J; Ko G
    J Microbiol Biotechnol; 2012 Sep; 22(9):1288-95. PubMed ID: 22814505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of ventilation system cleaning workers to harmful microbiological agents.
    Gołofit-Szymczak M; Ławniczek-Wałczyk A; Górny RL
    Med Pr; 2013; 64(5):613-23. PubMed ID: 24502124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indoor air quality assessment in dwellings with different ventilation strategies in Nunavik and impacts on bacterial and fungal microbiota.
    Degois J; Veillette M; Poulin P; Lévesque B; Aubin D; Ouazia B; Brisson M; Maltais F; Duchaine C
    Indoor Air; 2021 Nov; 31(6):2213-2225. PubMed ID: 34048604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.
    Hwang GB; Lee JE; Nho CW; Lee BU; Lee SJ; Jung JH; Bae GN
    Sci Total Environ; 2012 Apr; 421-422():273-9. PubMed ID: 22369866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous microbiological air monitoring for aseptic filling lines.
    Scherwing C; Golin F; Guenec O; Pflanz K; Dalmaso G; Bini M; Andone F
    PDA J Pharm Sci Technol; 2007; 61(2):102-9. PubMed ID: 17479718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative filter forensics: Size distribution and particulate matter concentrations in residential buildings.
    Mahdavi A; Siegel JA
    Indoor Air; 2021 Jul; 31(4):1050-1060. PubMed ID: 33368774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a tractor cab using real-time aerosol counting instrumentation.
    Hall RM; Heitbrink WA; Reed LD
    Appl Occup Environ Hyg; 2002 Jan; 17(1):47-54. PubMed ID: 11800406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of an air cleaner with electrostatic filter on the removal of airborne house dust mite allergens.
    Agrawal SR; Kim HJ; Lee YW; Sohn JH; Lee JH; Kim YJ; Lee SH; Hong CS; Park JW
    Yonsei Med J; 2010 Nov; 51(6):918-23. PubMed ID: 20879060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of filter collection efficiency on the clean air delivery rate in an air cleaner.
    Kim JS; Lee MH
    Indoor Air; 2021 May; 31(3):745-754. PubMed ID: 33020961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
    Welling I; Lehtimäki M; Rautio S; Lähde T; Enbom S; Hynynen P; Hämeri K
    J Occup Environ Hyg; 2009 Feb; 6(2):90-8. PubMed ID: 19065389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine and ultrafine particle removal efficiency of new residential HVAC filters.
    Fazli T; Zeng Y; Stephens B
    Indoor Air; 2019 Jul; 29(4):656-669. PubMed ID: 31077624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms.
    Zhao Y; Low ZX; Feng S; Zhong Z; Wang Y; Yao Z
    Nanoscale; 2017 May; 9(17):5433-5444. PubMed ID: 28230878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.