These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 24524342)
1. Microneedle-assisted microparticle delivery by gene guns: experiments and modeling on the effects of particle characteristics. Zhang D; Rielly CD; Das DB Drug Deliv; 2015 May; 22(3):335-50. PubMed ID: 24524342 [TBL] [Abstract][Full Text] [Related]
2. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel. Zhang D; Das DB; Rielly CD J Pharm Sci; 2014 Feb; 103(2):613-27. PubMed ID: 24399616 [TBL] [Abstract][Full Text] [Related]
3. An experimental study of microneedle-assisted microparticle delivery. Zhang D; Das DB; Rielly CD J Pharm Sci; 2013 Oct; 102(10):3632-44. PubMed ID: 23893898 [TBL] [Abstract][Full Text] [Related]
4. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Zhang D; Das DB; Rielly CD Drug Deliv; 2014 Dec; 21(8):571-87. PubMed ID: 24313864 [TBL] [Abstract][Full Text] [Related]
5. An acoustic microscopy technique to assess particle size and distribution following needle-free injection. Condliffe J; Schiffter HA; Cleveland RO; Coussios CC J Acoust Soc Am; 2010 Apr; 127(4):2252-61. PubMed ID: 20370006 [TBL] [Abstract][Full Text] [Related]
6. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides. Tseng KH; Lin PY Materials (Basel); 2014 Jun; 7(6):4755-4772. PubMed ID: 28788704 [TBL] [Abstract][Full Text] [Related]
7. Dynamics modelling of biolistic gene guns. Zhang M; Tao W; Pianetta PA Phys Med Biol; 2007 Mar; 52(5):1485-93. PubMed ID: 17301466 [TBL] [Abstract][Full Text] [Related]
8. Monitoring the penetration process of single microneedles with varying tip diameters. Römgens AM; Bader DL; Bouwstra JA; Baaijens FPT; Oomens CWJ J Mech Behav Biomed Mater; 2014 Dec; 40():397-405. PubMed ID: 25305633 [TBL] [Abstract][Full Text] [Related]
9. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Hedberg Y; Midander K; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):456-68. PubMed ID: 20821707 [TBL] [Abstract][Full Text] [Related]
10. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Kaur M; Ita KB; Popova IE; Parikh SJ; Bair DA Eur J Pharm Biopharm; 2014 Feb; 86(2):284-91. PubMed ID: 24176676 [TBL] [Abstract][Full Text] [Related]
11. Ballistic impact of single particles into gelatin: experiments and modeling with application to transdermal pharmaceutical delivery. Guha RA; Shear NH; Papini M J Biomech Eng; 2010 Oct; 132(10):101003. PubMed ID: 20887013 [TBL] [Abstract][Full Text] [Related]
12. [Penetration of microparticles into human skin]. Lademann J; Schaefer H; Otberg N; Teichmann A; Blume-Peytavi U; Sterry W Hautarzt; 2004 Dec; 55(12):1117-9. PubMed ID: 15568130 [TBL] [Abstract][Full Text] [Related]
13. Ballistic delivery of compounds to inner layers of the cornea is limited by tough mechanical properties of stromal tissue. Laccetti B; Kornfield J J Mech Behav Biomed Mater; 2021 Mar; 115():104246. PubMed ID: 33340774 [TBL] [Abstract][Full Text] [Related]
14. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel. Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706 [TBL] [Abstract][Full Text] [Related]
15. The particle inflow gun can be used to co-transform Paramecium using Tungsten particles. Fraga D; Keenan E; Hendel E; Nair A; Schofield W J Eukaryot Microbiol; 2006; 53(1):16-9. PubMed ID: 16441576 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles. Paleco R; Vučen SR; Crean AM; Moore A; Scalia S Int J Pharm; 2014 Sep; 472(1-2):206-13. PubMed ID: 24928134 [TBL] [Abstract][Full Text] [Related]
17. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Ilić I; Dreu R; Burjak M; Homar M; Kerc J; Srcic S Int J Pharm; 2009 Nov; 381(2):176-83. PubMed ID: 19446625 [TBL] [Abstract][Full Text] [Related]
18. Implantation mechanics of tungsten microneedles into peripheral nerve trunks. Yoshida K; Lewinsky I; Nielsen M; Hylleberg M Med Biol Eng Comput; 2007 Apr; 45(4):413-20. PubMed ID: 17333101 [TBL] [Abstract][Full Text] [Related]
19. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. Kochhar JS; Quek TC; Soon WJ; Choi J; Zou S; Kang L J Pharm Sci; 2013 Nov; 102(11):4100-8. PubMed ID: 24027112 [TBL] [Abstract][Full Text] [Related]
20. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. Donnelly RF; Garland MJ; Morrow DI; Migalska K; Singh TR; Majithiya R; Woolfson AD J Control Release; 2010 Nov; 147(3):333-41. PubMed ID: 20727929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]