These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24524346)

  • 1. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
    Marrale M; Longo A; Brai M; Barbon A; Brustolon M
    Radiat Res; 2014 Feb; 181(2):184-92. PubMed ID: 24524346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power saturation of ESR signal in ammonium tartrate exposed to 60Co gamma-ray photons, electrons and protons.
    Marrale M; Brai M; Triolo A; Bartolotta A; D'Oca MC
    Radiat Res; 2006 Nov; 166(5):802-9. PubMed ID: 17067208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of dose and radiation quality on the shape and power saturation of the EPR signal in alanine.
    Ciesielski B; Wielopolski L
    Radiat Res; 1994 Oct; 140(1):105-11. PubMed ID: 7938443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR investigation of sucrose radicals produced by particle irradiation.
    Nakagawa K; Sato Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1315-8. PubMed ID: 15134729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.
    Livshits VA; Páli T; Marsh D
    J Magn Reson; 1998 Sep; 134(1):113-23. PubMed ID: 9740736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques.
    Marrale M; Brai M; Barbon A; Brustolon M
    Radiat Res; 2009 Mar; 171(3):349-59. PubMed ID: 19267562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams.
    Marrale M; Longo A; Barbon A; Brustolon M; Brai M
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):398-402. PubMed ID: 24591730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of high-linear energy transfer ions on the electron paramagnetic resonance signal induced in alanine.
    Ciesielski B; Stuglik Z; Wielopolski L; Zvara I
    Radiat Res; 1998 Oct; 150(4):469-74. PubMed ID: 9768862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of boron on the electron paramagnetic resonance spectra of alanine irradiated with thermal neutrons.
    Ciesielski B; Wielopolski L
    Radiat Res; 1995 Oct; 144(1):59-63. PubMed ID: 7568772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative biological effectiveness of 6 MeV neutrons with respect to cell inactivation and disturbances of the G1 phase.
    Zölzer F; Streffer C
    Radiat Res; 2008 Feb; 169(2):207-13. PubMed ID: 18220459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of radiation quality on the risks of second malignancies.
    Manem VS; Kohandel M; Hodgson DC; Sharpe MB; Sivaloganathan S
    Int J Radiat Biol; 2015 Mar; 91(3):209-17. PubMed ID: 25356906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave frequency modulation in continuous-wave far-infrared ESR utilizing a quasi-optical reflection bridge.
    Náfrádi B; Gaál R; Fehér T; Forró L
    J Magn Reson; 2008 Jun; 192(2):265-8. PubMed ID: 18375160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of T1-spin-lattice relaxation time in a two-level system by continuous wave multiquantum electron paramagnetic resonance spectroscopy in a presence of tetrachromatic microwave irradiation.
    Dutka M; Gurbiel RJ; Kozioł J; Froncisz W
    J Magn Reson; 2004 Oct; 170(2):220-7. PubMed ID: 15388084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing the dose distribution and linear energy transfer by 1D and 2D ESR imaging: a potassium dithionate dosimeter irradiated with C6+ and N7+ ions.
    Gustafsson H; Kruczala K; Lund E; Schlick S
    J Phys Chem B; 2008 Jul; 112(29):8437-42. PubMed ID: 18588339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin dynamics and relaxation in graphene nanoribbons: electron spin resonance probing.
    Rao SS; Stesmans A; van Tol J; Kosynkin DV; Higginbotham-Duque A; Lu W; Sinitskii A; Tour JM
    ACS Nano; 2012 Sep; 6(9):7615-23. PubMed ID: 22901098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals: rotational motion effects.
    Livshits VA; Marsh D
    J Magn Reson; 2000 Jul; 145(1):84-94. PubMed ID: 10873499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in alanine/ESR dosimetry at the Physikalisch-Technische Bundesanstalt.
    Anton M
    Phys Med Biol; 2006 Nov; 51(21):5419-40. PubMed ID: 17047261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes.
    Dzuba SA; Kirilina EP; Salnikov ES
    J Chem Phys; 2006 Aug; 125(5):054502. PubMed ID: 16942221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.