BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24524429)

  • 1. TiO2-assisted photoisomerization of azo dyes using self-assembled monolayers: case study on para-methyl red towards solar-cell applications.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3742-9. PubMed ID: 24524429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.
    Zhang L; Cole JM; Dai C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7535-46. PubMed ID: 24786472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption properties of p-methyl red monomeric-to-pentameric dye aggregates on anatase (101) titania surfaces: first-principles calculations of dye/TiO₂ photoanode interfaces for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15760-6. PubMed ID: 25148140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents.
    Zhang L; Cole JM
    Phys Chem Chem Phys; 2016 Jul; 18(28):19062-9. PubMed ID: 27356762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of acene-bridged dyes for dye-sensitized solar cells.
    Li M; Kou L; Diao L; Zhang Q; Li Z; Wu Q; Lu W; Pan D
    J Phys Chem A; 2015 Apr; 119(13):3299-309. PubMed ID: 25756752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation.
    Pastore M; Angelis FD
    ACS Nano; 2010 Jan; 4(1):556-62. PubMed ID: 20020758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer Dye Aggregation at Dye/TiO
    Zhang L; Liu X; Rao W; Li J
    Sci Rep; 2016 Oct; 6():35893. PubMed ID: 27767196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.
    Hayashi H; Higashino T; Kinjo Y; Fujimori Y; Kurotobi K; Chabera P; Sundström V; Isoda S; Imahori H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18689-96. PubMed ID: 26266818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance.
    Xin X; Scheiner M; Ye M; Lin Z
    Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations.
    Liang J; Zhu C; Cao Z
    Phys Chem Chem Phys; 2013 Sep; 15(33):13844-51. PubMed ID: 23698651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harvesting UV photons for solar energy conversion applications.
    Wielopolski M; Linton KE; Marszałek M; Gulcur M; Bryce MR; Moser JE
    Phys Chem Chem Phys; 2014 Feb; 16(5):2090-9. PubMed ID: 24343589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of limiting factors affecting photovoltaic performance of low-temperature-processed TiO₂ films in dye-sensitized solar cells.
    Lee TY; Kim HS; Park NG
    Chemphyschem; 2014 Apr; 15(6):1098-105. PubMed ID: 24470338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different formation kinetics and photoisomerization behavior of self-assembled monolayers of thiols and dithiolanes bearing azobenzene moieties.
    Yeung CL; Charlesworth S; Iqbal P; Bowen J; Preece JA; Mendes PM
    Phys Chem Chem Phys; 2013 Jul; 15(26):11014-24. PubMed ID: 23712584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.
    Wang J; Lin Z
    Chem Asian J; 2012 Dec; 7(12):2754-62. PubMed ID: 22711337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells.
    Kim B; Park SW; Kim JY; Yoo K; Lee JA; Lee MW; Lee DK; Kim JY; Kim B; Kim H; Han S; Son HJ; Ko MJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5201-7. PubMed ID: 23679678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environment-dependent ultrafast photoisomerization dynamics in azo dye.
    Hsu CC; Wang YT; Yabushita A; Luo CW; Hsiao YN; Lin SH; Kobayashi T
    J Phys Chem A; 2011 Oct; 115(42):11508-14. PubMed ID: 21916471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites.
    Tan B; Wu Y
    J Phys Chem B; 2006 Aug; 110(32):15932-8. PubMed ID: 16898747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.