BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24524560)

  • 1. Effects of aqueous soaking on the phytate and mineral contents and phytate:mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum.
    Kruger J; Oelofse A; Taylor JR
    Int J Food Sci Nutr; 2014 Aug; 65(5):539-46. PubMed ID: 24524560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals.
    Wu G; Ashton J; Simic A; Fang Z; Johnson SK
    Food Res Int; 2018 Jan; 103():509-514. PubMed ID: 29389641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A home-based method to reduce phytate content and increase zinc bioavailability in maize-based complementary diets.
    Hotz C; Gibson RS; Temple L
    Int J Food Sci Nutr; 2001 Mar; 52(2):133-42. PubMed ID: 11303461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays).
    Hotz C; Gibson RS
    J Agric Food Chem; 2001 Feb; 49(2):692-8. PubMed ID: 11262014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and environmental impact on iron, zinc, and phytate in food sorghum grown in Benin.
    Kayodé AP; Linnemann AR; Hounhouigan JD; Nout MJ; van Boekel MA
    J Agric Food Chem; 2006 Jan; 54(1):256-62. PubMed ID: 16390208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China.
    Ma G; Jin Y; Piao J; Kok F; Guusje B; Jacobsen E
    J Agric Food Chem; 2005 Dec; 53(26):10285-90. PubMed ID: 16366728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model.
    Kruger J; Taylor JR; Du X; De Moura FF; Lönnerdal B; Oelofse A
    Food Chem; 2013 Nov; 141(2):1019-25. PubMed ID: 23790881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.
    Bressani R; Turcios JC; Colmenares de Ruiz AS; de Palomo PP
    J Agric Food Chem; 2004 Mar; 52(5):1157-62. PubMed ID: 14995114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya.
    Makokha AO; Oniang'o RK; Njoroge SM; Kamar OK
    Food Nutr Bull; 2002 Sep; 23(3 Suppl):241-5. PubMed ID: 12362804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sweetpotato-based complementary food would be less inhibitory on mineral absorption than a maize-based infant food assessed by compositional analysis.
    Amagloh FK; Brough L; Weber JL; Mutukumira AN; Hardacre A; Coad J
    Int J Food Sci Nutr; 2012 Dec; 63(8):957-63. PubMed ID: 22594854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology.
    Kayodé AP; Nout MJ; Bakker EJ; Van Boekel MA
    J Agric Food Chem; 2006 Jun; 54(12):4253-9. PubMed ID: 16756354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods.
    Perlas LA; Gibson RS
    Matern Child Nutr; 2005 Oct; 1(4):263-73. PubMed ID: 16881908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reduced phytate diet does not reduce endogenous fecal zinc in children on a habitual high-phytate diet.
    Kennedy G; Hambidge KM; Manary M
    J Pediatr Gastroenterol Nutr; 2010 Nov; 51(5):678-9. PubMed ID: 20818269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phytic acid mineral, trace element, protein and moisture content of UK Asian immigrant foods.
    Davies NT; Warrington S
    Hum Nutr Appl Nutr; 1986 Feb; 40(1):49-59. PubMed ID: 3957703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China.
    Ma G; Li Y; Jin Y; Zhai F; Kok FJ; Yang X
    Eur J Clin Nutr; 2007 Mar; 61(3):368-74. PubMed ID: 16929240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytate:zinc molar ratio, mineral, and fiber content of three hospital diets.
    Ellis R; Morris ER; Hill AD; Smith JC
    J Am Diet Assoc; 1982 Jul; 81(1):26-9. PubMed ID: 6282952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa.
    Hellström AM; Vázques-Juárez R; Svanberg U; Andlid TA
    Int J Food Microbiol; 2010 Jan; 136(3):352-8. PubMed ID: 19906458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate.
    Krittaphol W; Bailey KB; Pongcharoen T; Winichagoon P; Gibson RS
    Int J Food Sci Nutr; 2006; 57(7-8):520-8. PubMed ID: 17162330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.