BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24524560)

  • 21. Iron and zinc fortification of corn tortilla made either at the household or at industrial scale.
    Tovar LR; Larios-Saldaña A
    Int J Vitam Nutr Res; 2005 Mar; 75(2):142-8. PubMed ID: 15929635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential contribution of African green leafy vegetables and maize porridge composite meals to iron and zinc nutrition.
    Kruger J; Mongwaketse T; Faber M; van der Hoeven M; Smuts CM
    Nutrition; 2015 Sep; 31(9):1117-23. PubMed ID: 26233869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties.
    Afify Ael-M; El-Beltagi HS; El-Salam SM; Omran AA
    PLoS One; 2011; 6(10):e25512. PubMed ID: 22003395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of phytate and minerals on the bioavailability of oxalate from food.
    Israr B; Frazier RA; Gordon MH
    Food Chem; 2013 Dec; 141(3):1690-3. PubMed ID: 23870879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dietary molar ratios of phytate:zinc and millimolar ratios of phytate x calcium:zinc in South Koreans.
    Kwun IS; Kwon CS
    Biol Trace Elem Res; 2000; 75(1-3):29-41. PubMed ID: 11051594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentation and lactic acid addition enhance iron bioavailability of maize.
    Proulx AK; Reddy MB
    J Agric Food Chem; 2007 Apr; 55(7):2749-54. PubMed ID: 17355139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S; Platel K; Srinivasan K
    Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.
    Gabaza M; Shumoy H; Muchuweti M; Vandamme P; Raes K
    Food Res Int; 2018 Jan; 103():361-370. PubMed ID: 29389625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zinc absorption from a low-phytic acid maize.
    Adams CL; Hambidge M; Raboy V; Dorsch JA; Sian L; Westcott JL; Krebs NF
    Am J Clin Nutr; 2002 Sep; 76(3):556-9. PubMed ID: 12197999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parboiling of sorghum grains as a strategy to improve endosperm yield and mineral content of refined flours.
    Galán MG; Drago SR
    Food Sci Technol Int; 2019 Jan; 25(1):16-23. PubMed ID: 30111176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in malaysia.
    Norhaizan ME; Nor Faizadatul Ain AW
    Malays J Nutr; 2009 Sep; 15(2):213-22. PubMed ID: 22691819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The proximate, mineral, and toxicant compositions of four possible food security crops from southeastern Nigeria.
    Ojiako OA; Ogbuji CA; Agha NC; Onwuliri VA
    J Med Food; 2010 Oct; 13(5):1203-9. PubMed ID: 20828321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trace elements in foods of children from Cameroon: a focus on zinc and phytate content.
    Kana Sop MM; Gouado I; Mananga MJ; Djeukeu Asongni W; Amvam Zollo PH; Oberleas D; Tetanye E
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):201-4. PubMed ID: 22673825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron, zinc and calcium dialyzability from extruded product based on whole grain amaranth (Amaranthus caudatus and Amaranthus cruentus) and amaranth/Zea mays blends.
    Galan MG; Drago SR; Armada M; José RG
    Int J Food Sci Nutr; 2013 Jun; 64(4):502-7. PubMed ID: 23256750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An evaluation of the phytate, zinc, copper, iron and manganese contents of, and zn availability from, soya-based textured-vegetable-protein meat-substitutes or meat-extenders.
    Davies NT; Reid H
    Br J Nutr; 1979 May; 41(3):579-89. PubMed ID: 572701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility.
    Park YJ; Park J; Park KH; Oh BC; Auh JH
    J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe and Zn in vitro bioavailability in relation to antinutritional factors in biofortified beans subjected to different processes.
    Brigide P; de Toledo NMV; López-Nicolás R; Ros G; Frontela Saseta C; de Carvalho RV
    Food Funct; 2019 Aug; 10(8):4802-4810. PubMed ID: 31317144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines.
    Liu K; Peterson KL; Raboy V
    J Agric Food Chem; 2007 May; 55(11):4453-60. PubMed ID: 17488089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.