These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24524560)

  • 41. Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bio-accessibility of whole rice grain.
    Albarracín M; José González R; Drago SR
    Int J Food Sci Nutr; 2015 Mar; 66(2):210-5. PubMed ID: 25666413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of yeast and bran on phytate degradation and minerals in rice bread.
    Kadan RS; Phillippy BQ
    J Food Sci; 2007 May; 72(4):C208-11. PubMed ID: 17995762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vegetable relishes, high in β-carotene, increase the iron, zinc and β-carotene nutritive values from cereal porridges.
    Kruger J; Breynaert A; Pieters L; Hermans N
    Int J Food Sci Nutr; 2018 May; 69(3):291-297. PubMed ID: 28776446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nutrient composition of Cirina forda (Westwood)-enriched complementary foods.
    Adepoju OT; Daboh OO
    Ann Nutr Metab; 2013; 63(1-2):139-44. PubMed ID: 23988809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum).
    Azeke MA; Egielewa SJ; Eigbogbo MU; Ihimire IG
    J Food Sci Technol; 2011 Dec; 48(6):724-9. PubMed ID: 23572811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.
    Brnić M; Wegmüller R; Zeder C; Senti G; Hurrell RF
    J Nutr; 2014 Sep; 144(9):1467-73. PubMed ID: 24966411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids.
    Hambidge KM; Huffer JW; Raboy V; Grunwald GK; Westcott JL; Sian L; Miller LV; Dorsch JA; Krebs NF
    Am J Clin Nutr; 2004 Jun; 79(6):1053-9. PubMed ID: 15159236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality.
    Kayodé AP; Mertz C; Guyot JP; Brat P; Mouquet-Rivier C
    J Agric Food Chem; 2013 Feb; 61(8):1935-42. PubMed ID: 23373471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complementary feeding and effect of spontaneous fermentation on anti-nutritional factors of selected cereal-based complementary foods.
    Asres DT; Nana A; Nega G
    BMC Pediatr; 2018 Dec; 18(1):394. PubMed ID: 30579346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna.
    Marin AM; Siqueira EM; Arruda SF
    Int J Food Sci Nutr; 2009; 60 Suppl 7():180-90. PubMed ID: 19353365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods.
    Hurrell RF; Hurrell RF; Reddy MB; Burri J; Cook JD
    Br J Nutr; 2002 Aug; 88(2):117-23. PubMed ID: 12144715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Community-based dietary phytate reduction and its effect on iron status in Malawian children.
    Manary MJ; Krebs NF; Gibson RS; Broadhead RL; Hambidge KM
    Ann Trop Paediatr; 2002 Jun; 22(2):133-6. PubMed ID: 12070948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of a modified Haug and Lantzsch method for the rapid and accurate photometrical phytate determination in soybean, wheat, and maize meals.
    Reichwald K; Hatzack F
    J Agric Food Chem; 2008 May; 56(9):2888-91. PubMed ID: 18407656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Trait stacking simultaneously enhances provitamin A carotenoid and mineral bioaccessibility in biofortified
    Dzakovich MP; Debelo H; Albertsen MC; Che P; Jones TJ; Simon MK; Zhao ZY; Glassman K; Ferruzzi MG
    Food Funct; 2023 Jul; 14(15):7053-7065. PubMed ID: 37449680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize.
    Mazariegos M; Hambidge KM; Krebs NF; Westcott JE; Lei S; Grunwald GK; Campos R; Barahona B; Raboy V; Solomons NW
    Am J Clin Nutr; 2006 Jan; 83(1):59-64. PubMed ID: 16400050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of phytate on element bioavailability in the second generation of rats.
    Grases F; Simonet BM; Perelló J; Costa-Bauzá A; Prieto RM
    J Trace Elem Med Biol; 2004; 17(4):229-34. PubMed ID: 15139384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytate and zinc content of Italian diets.
    Carnovale E; Lombardi-Boccia G; Lugaro E
    Hum Nutr Appl Nutr; 1987 Jun; 41(3):180-6. PubMed ID: 3623985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorus utilization and characterization of excreta from swine fed diets containing a variety of cereal grains balanced for total phosphorus.
    Leytem AB; Thacker PA
    J Anim Sci; 2010 May; 88(5):1860-7. PubMed ID: 20118416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.