These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24524658)

  • 21. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.
    Barroso M; Mesa CA; Pendlebury SR; Cowan AJ; Hisatomi T; Sivula K; Grätzel M; Klug DR; Durrant JR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15640-5. PubMed ID: 22802673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation.
    Yang S; Prendergast D; Neaton JB
    Nano Lett; 2012 Jan; 12(1):383-8. PubMed ID: 22192078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.
    Zhang P; Wang T; Gong J
    Adv Mater; 2015 Sep; 27(36):5328-42. PubMed ID: 26265309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.
    Wang W; Chen J; Li C; Tian W
    Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array.
    Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N
    Nat Commun; 2013; 4():2651. PubMed ID: 24136178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies.
    Wang Q; Domen K
    Chem Rev; 2020 Jan; 120(2):919-985. PubMed ID: 31393702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hollow AgI:Ag nanoframes as solar photocatalysts for hydrogen generation from water reduction.
    An C; Wang J; Liu J; Wang S; Sun Y
    ChemSusChem; 2013 Oct; 6(10):1931-7. PubMed ID: 24105996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts.
    Wang R; Pan K; Han D; Jiang J; Xiang C; Huang Z; Zhang L; Xiang X
    ChemSusChem; 2016 Sep; 9(17):2470-9. PubMed ID: 27484581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guiding Principles for Designing Highly Efficient Metal-Free Carbon Catalysts.
    Zhang L; Lin CY; Zhang D; Gong L; Zhu Y; Zhao Z; Xu Q; Li H; Xia Z
    Adv Mater; 2019 Mar; 31(13):e1805252. PubMed ID: 30536475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
    Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R
    Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Au-Pd/mesoporous Fe
    Lin H; Liu Y; Deng J; Zhang K; Zhang X; Xie S; Zhao X; Yang J; Han Z; Dai H
    J Environ Sci (China); 2018 Aug; 70():74-86. PubMed ID: 30037413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.
    Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying champion nanostructures for solar water-splitting.
    Warren SC; Voïtchovsky K; Dotan H; Leroy CM; Cornuz M; Stellacci F; Hébert C; Rothschild A; Grätzel M
    Nat Mater; 2013 Sep; 12(9):842-9. PubMed ID: 23832125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production.
    Jiang D; Irfan RM; Sun Z; Lu D; Du P
    ChemSusChem; 2016 Nov; 9(21):3084-3092. PubMed ID: 27730758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures.
    Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP
    ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.