These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 24524659)
1. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. Tsai ML; Hadt RG; Vanelderen P; Sels BF; Schoonheydt RA; Solomon EI J Am Chem Soc; 2014 Mar; 136(9):3522-9. PubMed ID: 24524659 [TBL] [Abstract][Full Text] [Related]
2. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Yumura T; Takeuchi M; Kobayashi H; Kuroda Y Inorg Chem; 2009 Jan; 48(2):508-17. PubMed ID: 19093853 [TBL] [Abstract][Full Text] [Related]
3. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
4. Bis(mu-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-vis-near-IR, and kinetic study. Groothaert MH; van Bokhoven JA; Battiston AA; Weckhuysen BM; Schoonheydt RA J Am Chem Soc; 2003 Jun; 125(25):7629-40. PubMed ID: 12812505 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of N2O reduction by the mu4-S tetranuclear CuZ cluster of nitrous oxide reductase. Gorelsky SI; Ghosh S; Solomon EI J Am Chem Soc; 2006 Jan; 128(1):278-90. PubMed ID: 16390158 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity. Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624 [TBL] [Abstract][Full Text] [Related]
7. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626 [TBL] [Abstract][Full Text] [Related]
8. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site. Chen P; Gorelsky SI; Ghosh S; Solomon EI Angew Chem Int Ed Engl; 2004 Aug; 43(32):4132-40. PubMed ID: 15307074 [TBL] [Abstract][Full Text] [Related]
9. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Yu X; Zhong L; Li S Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299 [TBL] [Abstract][Full Text] [Related]
10. A DFT study on the [VO]1+-ZSM-5 cluster: direct methanol oxidation to formaldehyde by N2O. Fellah MF; Onal I Phys Chem Chem Phys; 2013 Sep; 15(33):13969-77. PubMed ID: 23852338 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic Definition of the Cu Johnston EM; Carreira C; Dell'Acqua S; Dey SG; Pauleta SR; Moura I; Solomon EI J Am Chem Soc; 2017 Mar; 139(12):4462-4476. PubMed ID: 28228011 [TBL] [Abstract][Full Text] [Related]
12. Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase. Ghosh S; Gorelsky SI; Chen P; Cabrito I; Moura JJ; Moura I; Solomon EI J Am Chem Soc; 2003 Dec; 125(51):15708-9. PubMed ID: 14677937 [TBL] [Abstract][Full Text] [Related]
13. A DFT Study of Tungsten-Methylidene Formation on a W/ZSM-5 Zeolite: The Metathesis Active Site. Maihom T; Probst M; Limtrakul J Chemphyschem; 2015 Oct; 16(15):3334-9. PubMed ID: 26264221 [TBL] [Abstract][Full Text] [Related]
14. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. Kim JY; Rodriguez JA; Hanson JC; Frenkel AI; Lee PL J Am Chem Soc; 2003 Sep; 125(35):10684-92. PubMed ID: 12940754 [TBL] [Abstract][Full Text] [Related]
15. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic insight into the effect of active site motif structures on direct oxidation of methane to methanol over Cu-ZSM-5. Dai C; Zhang Y; Liu N; Yu G; Wang N; Xu R; Chen B Phys Chem Chem Phys; 2023 Sep; 25(36):24894-24903. PubMed ID: 37681261 [TBL] [Abstract][Full Text] [Related]
17. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation. Hori Y; Shiota Y; Tsuji T; Kodera M; Yoshizawa K Inorg Chem; 2018 Jan; 57(1):8-11. PubMed ID: 29249146 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Cu-ZSM-5 zeolites and Cu-MOF-505 metal-organic frameworks as heterogeneous catalysts for the Mukaiyama aldol reaction: a DFT mechanistic study. Yadnum S; Choomwattana S; Khongpracha P; Sirijaraensre J; Limtrakul J Chemphyschem; 2013 Apr; 14(5):923-8. PubMed ID: 23436681 [TBL] [Abstract][Full Text] [Related]
20. Role of adsorbed NO in N2O decomposition over iron-containing ZSM-5 catalysts at low temperatures. Bulushev DA; Renken A; Kiwi-Minsker L J Phys Chem B; 2006 Jun; 110(22):10691-700. PubMed ID: 16771315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]