These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24524949)
1. Growth and development of Aedes aegypti larvae at limiting food concentrations. Levi T; Ben-Dov E; Shahi P; Borovsky D; Zaritsky A Acta Trop; 2014 May; 133():42-4. PubMed ID: 24524949 [TBL] [Abstract][Full Text] [Related]
2. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
3. The effects of Plagiorchis noblei metacercariae on the development and survival of Aedes aegypti larvae in the laboratory. Dempster SJ; Webber RA; Rau ME; Lewis DJ J Parasitol; 1986 Oct; 72(5):699-702. PubMed ID: 3806320 [TBL] [Abstract][Full Text] [Related]
4. Interspecific competition between larval stages of Haq S; Kumar G; Dhiman RC J Vector Borne Dis; 2019; 56(4):303-307. PubMed ID: 33269729 [TBL] [Abstract][Full Text] [Related]
5. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae). Gunathilaka PADHN; Uduwawala UMHU; Udayanga NWBAL; Ranathunge RMTB; Amarasinghe LD; Abeyewickreme W Bull Entomol Res; 2018 Oct; 108(5):583-592. PubMed ID: 29166980 [TBL] [Abstract][Full Text] [Related]
6. Aedes aegypti midgut remodeling during metamorphosis. Fernandes KM; Neves CA; SerrĂ£o JE; Martins GF Parasitol Int; 2014 Jun; 63(3):506-12. PubMed ID: 24472855 [TBL] [Abstract][Full Text] [Related]
7. A laboratory study of cyromazine on Aedes aegypti and Culex quinquefasciatus and its activity on selected predators of mosquito larvae. Nelson FR; Holloway D; Mohamed AK J Am Mosq Control Assoc; 1986 Sep; 2(3):296-9. PubMed ID: 3507502 [TBL] [Abstract][Full Text] [Related]
8. [The effect of the period of egg quiescence on the life cycle of Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae) under laboratory conditions]. da Silva HH; da Silva IG Rev Soc Bras Med Trop; 1999; 32(4):349-55. PubMed ID: 10495662 [TBL] [Abstract][Full Text] [Related]
9. Impact of container material on the development of Aedes aegypti larvae at different temperatures. Kumar G; Singh RK; Pande V; Dhiman RC J Vector Borne Dis; 2016; 53(2):144-8. PubMed ID: 27353584 [TBL] [Abstract][Full Text] [Related]
10. Food as a limiting factor for Aedes aegypti in water-storage containers. Arrivillaga J; Barrera R J Vector Ecol; 2004 Jun; 29(1):11-20. PubMed ID: 15266737 [TBL] [Abstract][Full Text] [Related]
11. A model for the development of Aedes (Stegomyia) aegypti as a function of the available food. Romeo Aznar V; De Majo MS; Fischer S; Francisco D; Natiello MA; Solari HG J Theor Biol; 2015 Jan; 365():311-24. PubMed ID: 25451964 [TBL] [Abstract][Full Text] [Related]
12. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. Chambers GM; Klowden MJ J Am Mosq Control Assoc; 1990 Sep; 6(3):394-9. PubMed ID: 2230767 [TBL] [Abstract][Full Text] [Related]
13. Critical period for pupal commitment in the yellow fever mosquito, Aedes aegypti. Lan Q; Grier CA J Insect Physiol; 2004 Jul; 50(7):667-76. PubMed ID: 15234627 [TBL] [Abstract][Full Text] [Related]
14. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Telang A; Frame L; Brown MR J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145 [TBL] [Abstract][Full Text] [Related]
15. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments. Reiskind MH; Janairo MS J Med Entomol; 2015 Sep; 52(5):789-96. PubMed ID: 26336228 [TBL] [Abstract][Full Text] [Related]
16. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. Nishiura JT; Ray K; Murray J Insect Biochem Mol Biol; 2005 Jun; 35(6):561-73. PubMed ID: 15857762 [TBL] [Abstract][Full Text] [Related]
17. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Chen J; Lu HR; Zhang L; Liao CH; Han Q Parasit Vectors; 2019 Jun; 12(1):311. PubMed ID: 31234914 [TBL] [Abstract][Full Text] [Related]
18. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. Souza RS; Diaz-Albiter HM; Dillon VM; Dillon RJ; Genta FA PLoS One; 2016; 11(3):e0151403. PubMed ID: 27007411 [TBL] [Abstract][Full Text] [Related]
19. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. Steinwascher K PLoS One; 2020; 15(10):e0234676. PubMed ID: 33006964 [TBL] [Abstract][Full Text] [Related]
20. Laboratory and field evaluation of novaluron, a new acylurea insect growth regulator, against Aedes aegypti (Diptera: Culicidae). Mulla MS; Thavara U; Tawatsin A; Chompoosri J; Zaim M; Su T J Vector Ecol; 2003 Dec; 28(2):241-54. PubMed ID: 14714674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]