BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24525075)

  • 1. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
    Lazaridis T; Leveritt JM; PeBenito L
    Biochim Biophys Acta; 2014 Sep; 1838(9):2149-59. PubMed ID: 24525075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-active peptides: binding, translocation, and flux in lipid vesicles.
    Almeida PF
    Biochim Biophys Acta; 2014 Sep; 1838(9):2216-27. PubMed ID: 24769436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane insertion of a voltage sensor helix.
    Wee CL; Chetwynd A; Sansom MS
    Biophys J; 2011 Jan; 100(2):410-9. PubMed ID: 21244837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.
    Doherty T; Su Y; Hong M
    J Mol Biol; 2010 Aug; 401(4):642-52. PubMed ID: 20600109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.
    Chen CH; Wiedman G; Khan A; Ulmschneider MB
    Biochim Biophys Acta; 2014 Sep; 1838(9):2243-9. PubMed ID: 24769159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations.
    Bond PJ; Sansom MS
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2631-6. PubMed ID: 17301243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions.
    Hu Y; Ou S; Patel S
    J Phys Chem B; 2013 Oct; 117(39):11641-53. PubMed ID: 23888915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers.
    Hu Y; Patel S
    J Membr Biol; 2015 Jun; 248(3):505-15. PubMed ID: 25008278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions of two arginine-rich peptides with different cell internalization capacities.
    Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID
    Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on the ability of two implicit solvent lipid models to predict transmembrane helix tilt angles.
    Frank A; Andricioaei I
    J Membr Biol; 2011 Jan; 239(1-2):57-62. PubMed ID: 21152910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer.
    Bond PJ; Wee CL; Sansom MS
    Biochemistry; 2008 Oct; 47(43):11321-31. PubMed ID: 18831536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
    Nishizawa M; Nishizawa K
    Biophys J; 2008 Aug; 95(4):1729-44. PubMed ID: 18487312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers.
    Via MA; Klug J; Wilke N; Mayorga LS; Del PĆ³polo MG
    Phys Chem Chem Phys; 2018 Feb; 20(7):5180-5189. PubMed ID: 29393934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.