These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24525198)

  • 1. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
    Zhang C; Liu H; Tan R; Li H
    Proc Inst Mech Eng H; 2014 Mar; 228(3):287-96. PubMed ID: 24525198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.
    Zhou H; Alici G; Than TD; Li W
    Proc Inst Mech Eng H; 2014 Mar; 228(3):280-6. PubMed ID: 24519417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes.
    Kwon J; Park S; Park J; Kim B
    Proc Inst Mech Eng H; 2007 May; 221(4):397-405. PubMed ID: 17605397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental research on anchoring force in intestine for the motion of capsule robot.
    Chen W; Ke Q; He S; Luo W; Ji XC; Yan G
    J Med Eng Technol; 2013 Jul; 37(5):334-41. PubMed ID: 23795696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract.
    Zhou H; Alici G; Than TD; Li W
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1751-9. PubMed ID: 23193447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal biomechanics simulator for robotic capsule endoscope validation.
    Slawinski PR; Oleynikov D; Terry BS
    J Med Eng Technol; 2015 Jan; 39(1):54-9. PubMed ID: 25367667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine.
    Kim JS; Sung IH; Kim YT; Kim DE; Jang YH
    Proc Inst Mech Eng H; 2007 Nov; 221(8):837-45. PubMed ID: 18161244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.
    Glass P; Cheung E; Sitti M
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2759-67. PubMed ID: 19126455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of resistant properties of the small intestine for an active capsule endoscope.
    Wang X; Meng MQ
    Proc Inst Mech Eng H; 2010; 224(1):107-18. PubMed ID: 20225462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implemented edge shape of an electrical stimulus capsule.
    Woo SH; Kim TW; Lee JH; Kim PU; Won CH; Cho JH
    Int J Med Robot; 2009 Mar; 5(1):59-65. PubMed ID: 19170130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure.
    Li P; Kothari V; Terry BS
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2702-8. PubMed ID: 26080374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of a material model and wheel-tissue interaction for simulating wheeled surgical robot mobility.
    Rentschler ME; Reid JD
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):239-48. PubMed ID: 19012064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An active endoscopic robot based on wireless power transmission and electromagnetic localization.
    Li H; Yan G; Ma G
    Int J Med Robot; 2008 Dec; 4(4):355-67. PubMed ID: 18956414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis.
    Flynn C; Taberner A; Nielsen P
    Biomech Model Mechanobiol; 2011 Feb; 10(1):27-38. PubMed ID: 20429025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless technologies for robotic endoscope in gastrointestinal tract.
    Gao P; Yan G; Wang Z; Liu H
    J Med Eng Technol; 2012 Jul; 36(5):242-50. PubMed ID: 22594607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a biologically inspired locomotion system for a capsule endoscope.
    Hosokawa D; Ishikawa T; Morikawa H; Imai Y; Yamaguchi T
    Int J Med Robot; 2009 Dec; 5(4):471-8. PubMed ID: 19760682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Review of the active locomotion system for capsule endoscope].
    Zhao D; Guo Y; Peng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):215-8. PubMed ID: 20337057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small intestine mucosal adhesivity to in vivo capsule robot materials.
    Terry BS; Passernig AC; Hill ML; Schoen JA; Rentschler ME
    J Mech Behav Biomed Mater; 2012 Nov; 15():24-32. PubMed ID: 23026729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frictional resistance characteristics of a capsule inside the intestine for microendoscope design.
    Baek NK; Sung IH; Kim DE
    Proc Inst Mech Eng H; 2004; 218(3):193-201. PubMed ID: 15239570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on a miniature robotic system for active monitoring in the human respiratory tract.
    Zan P; Yan G; Huang B
    J Med Eng Technol; 2009; 33(1):25-32. PubMed ID: 19116851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.