BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24525625)

  • 1. Direct detection of circulating microRNAs in serum of cancer patients by coupling protein-facilitated specific enrichment and rolling circle amplification.
    Hong CY; Chen X; Li J; Chen JH; Chen G; Yang HH
    Chem Commun (Camb); 2014 Mar; 50(25):3292-5. PubMed ID: 24525625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolling-circle amplification: unshared advantages in miRNA detection.
    Neubacher S; Arenz C
    Chembiochem; 2009 May; 10(8):1289-91. PubMed ID: 19373796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis.
    Li Y; Liang L; Zhang CY
    Anal Chem; 2013 Dec; 85(23):11174-9. PubMed ID: 24215456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification.
    Cheng Y; Zhang X; Li Z; Jiao X; Wang Y; Zhang Y
    Angew Chem Int Ed Engl; 2009; 48(18):3268-72. PubMed ID: 19219883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection.
    Cui L; Zhu Z; Lin N; Zhang H; Guan Z; Yang CJ
    Chem Commun (Camb); 2014 Feb; 50(13):1576-8. PubMed ID: 24382471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification.
    Yao Q; Wang Y; Wang J; Chen S; Liu H; Jiang Z; Zhang X; Liu S; Yuan Q; Zhou X
    ACS Nano; 2018 Jul; 12(7):6777-6783. PubMed ID: 29924598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of microRNA by chronocoulometry and rolling circle amplification on a gold electrode.
    Yao B; Liu Y; Tabata M; Zhu H; Miyahara Y
    Chem Commun (Camb); 2014 Sep; 50(68):9704-6. PubMed ID: 25017088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free detection of microRNA based on coupling multiple isothermal amplification techniques.
    Zheng X; Niu L; Wei D; Li X; Zhang S
    Sci Rep; 2016 Oct; 6():35982. PubMed ID: 27777399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemiluminescence detection of DNA/microRNA based on cation-exchange of CuS nanoparticles and rolling circle amplification.
    Zhang X; Liu H; Li R; Zhang N; Xiong Y; Niu S
    Chem Commun (Camb); 2015 Apr; 51(32):6952-5. PubMed ID: 25797586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode.
    Miao P; Wang B; Meng F; Yin J; Tang Y
    Bioconjug Chem; 2015 Mar; 26(3):602-7. PubMed ID: 25692917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascade signal amplification strategy for the detection of cancer cells by rolling circle amplification and nanoparticles tagging.
    Ding C; Liu H; Wang N; Wang Z
    Chem Commun (Camb); 2012 May; 48(41):5019-21. PubMed ID: 22511176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.
    Zhang LR; Zhu G; Zhang CY
    Anal Chem; 2014 Jul; 86(13):6703-9. PubMed ID: 24903889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microRNA detection system based on padlock probes and rolling circle amplification.
    Jonstrup SP; Koch J; Kjems J
    RNA; 2006 Sep; 12(9):1747-52. PubMed ID: 16888321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification.
    Zhao B; Song J; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Feb; 47(2):130-6. PubMed ID: 25534778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells.
    Deng R; Tang L; Tian Q; Wang Y; Lin L; Li J
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2389-93. PubMed ID: 24469913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal amplification by rolling circle amplification on universal flaps yielded from target-specific invasive reaction.
    Zou B; Ma Y; Wu H; Zhou G
    Analyst; 2012 Feb; 137(3):729-34. PubMed ID: 22158835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A colorimetric method for H1N1 DNA detection using rolling circle amplification.
    Xing Y; Wang P; Zang Y; Ge Y; Jin Q; Zhao J; Xu X; Zhao G; Mao H
    Analyst; 2013 Jun; 138(12):3457-62. PubMed ID: 23653903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attomole DNA detection assay via rolling circle amplification and single molecule detection.
    Schopf E; Chen Y
    Anal Biochem; 2010 Feb; 397(1):115-7. PubMed ID: 19761749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay.
    Bi S; Cui Y; Li L
    Anal Chim Acta; 2013 Jan; 760():69-74. PubMed ID: 23265735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein.
    Ou LJ; Liu SJ; Chu X; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(23):9664-73. PubMed ID: 19877619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.