BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24526382)

  • 1. First principles calculations of phenol adsorption on pristine and group III (B, Al, Ga) doped graphene layers.
    Avila Y; Cocoletzi GH; Romero MT
    J Mol Model; 2014 Feb; 20(2):2112. PubMed ID: 24526382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymine adsorption on two-dimensional boron nitride structures: first-principles studies.
    Castro-Medina J; García-Toral D; López-Fuentes M; Sánchez-Castillo A; Torres-Morales S; de la Garza LM; Cocoletzi GH
    J Mol Model; 2017 Apr; 23(4):109. PubMed ID: 28285442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles studies of the graphene-phenol interactions.
    Hernández JM; Anota EC; de la Cruz MT; Melchor MG; Cocoletzi GH
    J Mol Model; 2012 Aug; 18(8):3857-66. PubMed ID: 22415370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.
    Lv YA; Zhuang GL; Wang JG; Jia YB; Xie Q
    Phys Chem Chem Phys; 2011 Jul; 13(27):12472-7. PubMed ID: 21660330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adsorption of chlorofluoromethane on pristine, and Al- and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study.
    Doust Mohammadi M; Abdullah HY
    J Mol Model; 2020 Sep; 26(10):287. PubMed ID: 32980919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transport properties of graphene doped by gallium.
    Mach J; Procházka P; Bartošík M; Nezval D; Piastek J; Hulva J; Švarc V; Konečný M; Kormoš L; Šikola T
    Nanotechnology; 2017 Oct; 28(41):415203. PubMed ID: 28813368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of formamide over pristine and Al-doped boron nitride nanosheets: A dispersion-corrected DFT study.
    Esrafili MD; Mousavian P; Arjomandi Rad F
    J Mol Graph Model; 2018 Jun; 82():101-107. PubMed ID: 29723820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First principles study on the hydrophilic and conductive graphene doped with Al atoms.
    Jiang QG; Ao ZM; Jiang Q
    Phys Chem Chem Phys; 2013 Jul; 15(26):10859-65. PubMed ID: 23698288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.
    Denis PA
    Chemphyschem; 2014 Dec; 15(18):3994-4000. PubMed ID: 25349028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple-Doped Monolayer Graphene with Boron, Nitrogen, Aluminum, Silicon, Phosphorus, and Sulfur.
    Ullah S; Denis PA; Sato F
    Chemphyschem; 2017 Jul; 18(14):1864-1873. PubMed ID: 28440903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density Functional Theory Study of B, N, and Si Doped Penta-Graphene as the Potential Gas Sensors for NH
    Chen G; Gan L; Xiong H; Zhang H
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring high-energy and mechanically robust anode materials based on doped graphene for lithium-ion batteries: a first-principles study.
    Chang C; Yin S; Xu J
    RSC Adv; 2020 Apr; 10(23):13662-13668. PubMed ID: 35493008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving As(III) adsorption on graphene based surfaces: impact of chemical doping.
    Cortés-Arriagada D; Toro-Labbé A
    Phys Chem Chem Phys; 2015 May; 17(18):12056-64. PubMed ID: 25873031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory study on the interactions of L-cysteine with graphene: adsorption stability and magnetism.
    Luo H; Li H; Fu Q; Chu Y; Cao X; Sun C; Yuan X; Liu L
    Nanotechnology; 2013 Dec; 24(49):495702. PubMed ID: 24231132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT study on effective detection of ClCN gas by functionalized, decorated, and doped nanocone strategies.
    Kumar A; Sayyed MI; Sabugaa MM; Al-Bahrani M; Sharma S; Saadh MJ
    RSC Adv; 2023 Apr; 13(18):12554-12571. PubMed ID: 37101948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and Optical Properties of Twin T-Graphene Co-Doped with Boron and Phosphorus.
    Gao Y; Xie Y; Wang S; Li S; Chen L; Zhang J
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.