These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24526798)

  • 41. Lidar-signal compression by photomultiplier gain modulation: influence of detector nonlinearity.
    Bristow MP
    Appl Opt; 1998 Sep; 37(27):6468-79. PubMed ID: 18286154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatigue Effects on the Area Sensitivity, Dynode Gain, and Anode Output for Several End-on Photomultipliers.
    Youngbluth O
    Appl Opt; 1970 Feb; 9(2):321-8. PubMed ID: 20076188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precise analysis of the timing performance of Cherenkov-radiator-integrated MCP-PMTs: analytical deconvolution of MCP direct interactions.
    Ota R; Nakajima K; Ogawa I; Tamagawa Y; Shimoi H; Suyama M; Hasegawa T
    Phys Med Biol; 2020 Jun; 65(10):10NT03. PubMed ID: 32325434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new large area MCP-PMT for high energy detection.
    Chen L; Yang H; Wang X; Tian L; Ding D; Wang Y; Ji K; Zheng P; Luo T; She C
    Sci Rep; 2023 Nov; 13(1):20436. PubMed ID: 37993486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A compact large-format streak tube for imaging lidar.
    Hui D; Luo D; Tian L; Lu Y; Chen P; Wang J; Sai X; Wen W; Wang X; Xin L; Zhao W; Tian J
    Rev Sci Instrum; 2018 Apr; 89(4):045113. PubMed ID: 29716329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase-modulation fluorometer using a dynode-voltage burst-modulated photomultiplier tube.
    Iwata T; Araki T
    Appl Spectrosc; 2005 Aug; 59(8):1049-53. PubMed ID: 16105215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of silicon photomultipliers for multiphoton and laser scanning microscopy.
    Giacomelli MG
    J Biomed Opt; 2019 Oct; 24(10):1-7. PubMed ID: 31625323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing the design of ultrafast photomultiplier tubes.
    Chen L; Wang X; Qian S; Zhang X; Wu Q; Ma L; Zeng P; Sun C
    Opt Express; 2023 Aug; 31(18):29975-29985. PubMed ID: 37710786
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers.
    Kwon SI; Ferri A; Gola A; Berg E; Piemonte C; Cherry SR; Roncali E
    J Med Imaging (Bellingham); 2016 Oct; 3(4):043501. PubMed ID: 27921069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A practical multiple reflection technique for improving the quantum efficiency of photomultiplier tubes.
    Oke JB; Schild RE
    Appl Opt; 1968 Apr; 7(4):617-22. PubMed ID: 20068647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Restoration of saturated outputs from microchannel plate photomultiplier tubes in sub-microsecond single-pulse-current mode.
    Meng S; Yi Q; Zhou L; Yan X; Yang J; Ye F; Yang R; Jiang S; Ning J; Huang Z; Xu Z; Li Z; Lu J
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37921519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.
    Pichler BJ; Swann BK; Rochelle J; Nutt RE; Cherry SR; Siegel SB
    Phys Med Biol; 2004 Sep; 49(18):4305-19. PubMed ID: 15509067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Prototype TOF PET Detector Module Using a Micro-Channel Plate Photomultiplier Tube with Waveform Sampling.
    Kim H; Chen CT; Frisch H; Tang F; Kao CM
    Nucl Instrum Methods Phys Res A; 2012 Jan; 662(1):26-32. PubMed ID: 22347762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI.
    Schmall JP; Surti S; Karp JS
    Phys Med Biol; 2015 May; 60(9):3549-65. PubMed ID: 25860172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel photomultiplier tube neutron time-of-flight detector.
    Glebov VY; Stoeckl C; Forrest CJ; Knauer JP; Mannion OM; Romanofsky MH; Sangster TC; Regan SP
    Rev Sci Instrum; 2021 Jan; 92(1):013509. PubMed ID: 33514216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance evaluation of the next generation solid-state digital photon counting PET/CT system.
    Zhang J; Maniawski P; Knopp MV
    EJNMMI Res; 2018 Nov; 8(1):97. PubMed ID: 30402779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain.
    Hirano Y; Zeniya T; Iida H
    Ann Nucl Med; 2012 Apr; 26(3):214-21. PubMed ID: 22160738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fundamental flow cytometer properties governing sensitivity and resolution.
    Wood JC
    Cytometry; 1998 Oct; 33(2):260-6. PubMed ID: 9773889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Event Processing for Modular Gamma Cameras with Tiled Multi-Anode Photomultiplier Tubes.
    Salçın E; Furenlid LR
    IEEE Nucl Sci Symp Conf Rec (1997); 2012; 2012():3269-3272. PubMed ID: 26346627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beta-gamma coincidence counting efficiency and energy resolution optimization by Geant4 Monte Carlo simulations for a phoswich well detector.
    Zhang W; Mekarski P; Ungar K
    Appl Radiat Isot; 2010 Dec; 68(12):2377-81. PubMed ID: 20598559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.