BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24527439)

  • 1. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.
    Singh S; Singh S; Bali V; Sharma L; Mangla J
    Biomed Res Int; 2014; 2014():215748. PubMed ID: 24527439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of culture conditions for enhanced production of extracellular α-amylase using solid-state and submerged fermentation from Aspergillus tamarii MTCC5152.
    Premalatha A; Vijayalakshmi K; Shanmugavel M; Rajakumar GS
    Biotechnol Appl Biochem; 2023 Apr; 70(2):835-845. PubMed ID: 36070879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes.
    Balakrishnan M; Jeevarathinam G; Kumar SKS; Muniraj I; Uthandi S
    BMC Biotechnol; 2021 May; 21(1):33. PubMed ID: 33947396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS.
    Zaferanloo B; Bhattacharjee S; Ghorbani MM; Mahon PJ; Palombo EA
    BMC Microbiol; 2014 Mar; 14():55. PubMed ID: 24602289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application.
    Kalia S; Bhattacharya A; Prajapati SK; Malik A
    Chemosphere; 2021 Sep; 279():130554. PubMed ID: 33873067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus.
    Kunamneni A; Permaul K; Singh S
    J Biosci Bioeng; 2005 Aug; 100(2):168-71. PubMed ID: 16198259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of amylase by Aspergillus fumigatus utilizing alpha-methyl-D-glycoside, a synthetic analogue of maltose, as substrate.
    Goto CE; Barbosa EP; Kistner LC; Moreira FG; Lenartovicz V; Peralta RM
    FEMS Microbiol Lett; 1998 Oct; 167(2):139-43. PubMed ID: 9867468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and amylase production by Aspergillus oryzae during solid state fermentation using banana waste as substrate.
    Ragunathan R; Swaminathan K
    J Environ Biol; 2005 Oct; 26(4):653-6. PubMed ID: 16459551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylase and Xylanase from Edible Fungus
    Shahryari Z; Fazaelipoor MH; Ghasemi Y; Lennartsson PR; Taherzadeh MJ
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30781572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The production of a new fungal alpha-amylase degraded the raw starch by means of solid-state fermentation.
    Balkan B; Ertan F
    Prep Biochem Biotechnol; 2010; 40(3):213-28. PubMed ID: 20623432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of alpha-amylase from Aspergillus niger JGI 24 isolated in Bangalore.
    Varalakshmi KN; Kumudini BS; Nandini BN; Solomon J; Suhas R; Mahesh B; Kavitha AP
    Pol J Microbiol; 2009; 58(1):29-36. PubMed ID: 19469283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation optimization and amylase activity of endophytic Bacillus velezensis D1 isolated from corn seeds.
    Hu Q; Wu Q; Dai B; Cui J; Khalid A; Li Y; Wang Z
    J Appl Microbiol; 2022 May; 132(5):3640-3649. PubMed ID: 35195950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative profiles of alpha-amylase production in conventional tray reactor and GROWTEK bioreactor.
    Bhanja T; Rout S; Banerjee R; Bhattacharyya BC
    Bioprocess Biosyst Eng; 2007 Sep; 30(5):369-76. PubMed ID: 17573554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of industrial and agricultural by-products for fungal amylase production.
    Mahmoud SA; Abdel-Hafez AM; Mashhoor WA; Refaat AA
    Zentralbl Bakteriol Naturwiss; 1978; 133(2):115-20. PubMed ID: 28620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous production of commercial enzymes using agro industrial residues by statistical approach.
    Viayaraghavan P; Jeba Kumar S; Valan Arasu M; Al-Dhabi NA
    J Sci Food Agric; 2019 Apr; 99(6):2685-2696. PubMed ID: 30345553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation.
    Abdel-Mageed HM; Barakat AZ; Bassuiny RI; Elsayed AM; Salah HA; Abdel-Aty AM; Mohamed SA
    Folia Microbiol (Praha); 2022 Apr; 67(2):253-264. PubMed ID: 34743285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM).
    Kar S; Ray RC; Mohapatra UB
    Pol J Microbiol; 2008; 57(4):289-96. PubMed ID: 19275042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of the Fruit and Vegetable Peels as Substrates for the Growth and Production of α-Amylases in Marine Actinobacteria.
    Dobariya A; Mankad GP; Ramavat H; Singh SP
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7603-7623. PubMed ID: 37067678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch.
    Chen L; Chi ZM; Chi Z; Li M
    Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and Partial Characterization of
    Simair AA; Qureshi AS; Khushk I; Ali CH; Lashari S; Bhutto MA; Mangrio GS; Lu C
    Biomed Res Int; 2017; 2017():9173040. PubMed ID: 28168200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.