BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 24527567)

  • 1. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity classification accuracy of accelerometer-measured physical activities in Chinese children and youth.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S4-11. PubMed ID: 24527562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction equations of energy expenditure in Chinese youth based on step frequency during walking and running.
    Sun B; Liu Y; Li JX; Li H; Chen P
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S64-71. PubMed ID: 24527568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study.
    O'Neil ME; Fragala-Pinkham MA; Forman JL; Trost SG
    J Pediatr Rehabil Med; 2014; 7(3):233-40. PubMed ID: 25260506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a two-regression model for estimating energy expenditure in children.
    Crouter SE; Horton M; Bassett DR
    Med Sci Sports Exerc; 2012 Jun; 44(6):1177-85. PubMed ID: 22143114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting energy expenditure from accelerometry counts in adolescent girls.
    Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R
    Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph.
    Hänggi JM; Phillips LR; Rowlands AV
    J Sci Med Sport; 2013 Jan; 16(1):40-4. PubMed ID: 22749938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and calibration of physical activity monitors in children.
    Puyau MR; Adolph AL; Vohra FA; Butte NF
    Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chinese city children and youth's walking behavior.
    Quan M; Chen P; Zhuang J; Wang C
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S29-40. PubMed ID: 24527564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T; Tanaka S; Kaneko K; Koizumi K; Ishikawa-Takata K; Futami J; Tabata I
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory calibration and validation of the Biotrainer and Actitrac activity monitors.
    Welk GJ; Almeida J; Morss G
    Med Sci Sports Exerc; 2003 Jun; 35(6):1057-64. PubMed ID: 12783056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating physical activity in youth using a wrist accelerometer.
    Crouter SE; Flynn JI; Bassett DR
    Med Sci Sports Exerc; 2015 May; 47(5):944-51. PubMed ID: 25207928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation and calibration of an accelerometer in preschool children.
    Pate RR; Almeida MJ; McIver KL; Pfeiffer KA; Dowda M
    Obesity (Silver Spring); 2006 Nov; 14(11):2000-6. PubMed ID: 17135617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.