These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24527648)

  • 1. Degradation of triphenylborane-pyridine antifouling agent in water by copper ions.
    Tsuboi A; Okamura H; Kaewchuay N; Fukushi K; Zhou X; Nishida T
    Environ Technol; 2013; 34(17-20):2835-40. PubMed ID: 24527648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent.
    Okamura H; Kitano S; Toyota S; Harino H; Thomas KV
    Chemosphere; 2009 Mar; 74(9):1275-8. PubMed ID: 19095285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water.
    Zhou X; Okamura H; Nagata S
    Chemosphere; 2007 May; 67(10):1904-10. PubMed ID: 17257651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels.
    Oliveira IB; Groh KJ; Schönenberger R; Barroso C; Thomas KV; Suter MJ
    Aquat Toxicol; 2017 Oct; 191():164-174. PubMed ID: 28843204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L.
    Wendt I; Arrhenius Å; Backhaus T; Hilvarsson A; Holm K; Langford K; Tunovic T; Blanck H
    Bull Environ Contam Toxicol; 2013 Oct; 91(4):426-32. PubMed ID: 23846394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: evidence for transchelation of metal pyrithiones.
    Holmes L; Turner A
    Environ Pollut; 2009 Dec; 157(12):3440-4. PubMed ID: 19616352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its estimated degradation products using capillary zone electrophoresis.
    Fukushi K; Yakushiji Y; Okamura H; Hashimoto Y; Saito K
    J Chromatogr A; 2010 Apr; 1217(14):2187-90. PubMed ID: 20189577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of copper and zinc from spent antifouling paint particles.
    Singh N; Turner A
    Environ Pollut; 2009 Feb; 157(2):371-6. PubMed ID: 19013700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms.
    Onduka T; Ojima D; Ito M; Ito K; Mochida K; Fujii K
    Arch Environ Contam Toxicol; 2013 Nov; 65(4):724-32. PubMed ID: 23929384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of Cu and Zn from discarded boat paint particles into tap water and rain water.
    Jessop A; Turner A
    Chemosphere; 2011 Jun; 83(11):1575-80. PubMed ID: 21300396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of pyridine-triphenylborane anti-fouling agent and its degradation products in paint-waste samples using capillary zone electrophoresis with field-amplified sample injection.
    Kaewchuay N; Fukushi K; Tsuboi A; Okamura H; Saito K; Hirokawa T
    Anal Sci; 2012; 28(12):1191-6. PubMed ID: 23232240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa.
    Wendt I; Backhaus T; Blanck H; Arrhenius Å
    Ecotoxicology; 2016 Jul; 25(5):871-9. PubMed ID: 26984312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of organoboron antifoulants on oyster and sea urchin embryo development.
    Tsunemasa N; Tsuboi A; Okamura H
    Int J Mol Sci; 2012 Dec; 14(1):421-33. PubMed ID: 23263671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.
    Konstantinou IK; Albanis TA
    Environ Int; 2004 Apr; 30(2):235-48. PubMed ID: 14749112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of DNA into 5'-monodeoxyribonucleotides in the presence of Mn(2+) ions.
    Maeda H; Wada S; Ikeguchi M; Minoura N; Ueki S; Arata T
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2670-9. PubMed ID: 17986770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environmental fate and effects of antifouling paint biocides.
    Thomas KV; Brooks S
    Biofouling; 2010 Jan; 26(1):73-88. PubMed ID: 20390558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release and detection of nanosized copper from a commercial antifouling paint.
    Adeleye AS; Oranu EA; Tao M; Keller AA
    Water Res; 2016 Oct; 102():374-382. PubMed ID: 27393962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation.
    Jankowska E; Pietruszka M; Kowalik-Jankowska T
    Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel hybrid mode of sample injection to enhance CZE sensitivity for simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its degradation products.
    Kaewchuay N; Yakushiji Y; Fukushi K; Saito K; Hirokawa T
    Electrophoresis; 2011 Jun; 32(12):1486-91. PubMed ID: 21563190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.