These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24527806)

  • 1. Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes.
    Lim YS; Nugraha AR; Cho SJ; Noh MY; Yoon EJ; Liu H; Kim JH; Telg H; Hároz EH; Sanders GD; Baik SH; Kataura H; Doorn SK; Stanton CJ; Saito R; Kono J; Joo T
    Nano Lett; 2014 Mar; 14(3):1426-32. PubMed ID: 24527806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared and Raman active vibrational modes in MoS
    Evarestov RA; Bandura AV
    J Comput Chem; 2018 Oct; 39(26):2163-2172. PubMed ID: 30318757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes.
    Graham MW; Calhoun TR; Green AA; Hersam MC; Fleming GR
    Nano Lett; 2012 Feb; 12(2):813-9. PubMed ID: 22214398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low- and high-frequency intermediate modes with step-like dispersion in resonance Raman scattering of carbon nanotubes.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8829-31. PubMed ID: 23421295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes.
    Rao AM; Richter E; Bandow S; Chase B; Eklund PC; Williams KA; Fang S; Subbaswamy KR; Menon M; Thess A; Smalley RE; Dresselhaus G; Dresselhaus MS
    Science; 1997 Jan; 275(5297):187-91. PubMed ID: 8985007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic properties of single-wall carbon nanotubes.
    Nanot S; Hároz EH; Kim JH; Hauge RH; Kono J
    Adv Mater; 2012 Sep; 24(36):4977-94. PubMed ID: 22911973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensity Ratio of Resonant Raman Modes for (n,m) Enriched Semiconducting Carbon Nanotubes.
    Piao Y; Simpson JR; Streit JK; Ao G; Zheng M; Fagan JA; Hight Walker AR
    ACS Nano; 2016 May; 10(5):5252-9. PubMed ID: 27128733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.
    Wang Y; Wu Y; Feng M; Wang H; Jin Q; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1102-5. PubMed ID: 18472297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical generation and absorption of phonons in carbon nanotubes.
    Leroy BJ; Lemay SG; Kong J; Dekker C
    Nature; 2004 Nov; 432(7015):371-4. PubMed ID: 15549099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
    Cronin SB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus MS; Tinkham M
    Phys Rev Lett; 2004 Oct; 93(16):167401. PubMed ID: 15525030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.