These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24527899)
1. A deterministic thermostat for controlling temperature using all degrees of freedom. Patra PK; Bhattacharya B J Chem Phys; 2014 Feb; 140(6):064106. PubMed ID: 24527899 [TBL] [Abstract][Full Text] [Related]
3. An ergodic configurational thermostat using selective control of higher order temperatures. Patra PK; Bhattacharya B J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443 [TBL] [Abstract][Full Text] [Related]
8. Zeroth Law investigation on the logarithmic thermostat. Patra PK; Bhattacharya B Sci Rep; 2018 Aug; 8(1):11670. PubMed ID: 30076324 [TBL] [Abstract][Full Text] [Related]
9. Proper Thermal Equilibration of Simulations with Drude Polarizable Models: Temperature-Grouped Dual-Nosé-Hoover Thermostat. Son CY; McDaniel JG; Cui Q; Yethiraj A J Phys Chem Lett; 2019 Dec; 10(23):7523-7530. PubMed ID: 31722528 [TBL] [Abstract][Full Text] [Related]
10. Fast Nosé-Hoover thermostat: molecular dynamics in quasi-thermodynamic equilibrium. Sidler D; Riniker S Phys Chem Chem Phys; 2019 Mar; 21(11):6059-6070. PubMed ID: 30810120 [TBL] [Abstract][Full Text] [Related]
11. Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time. Patra PK; Bhattacharya B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043304. PubMed ID: 25375620 [TBL] [Abstract][Full Text] [Related]
12. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387 [TBL] [Abstract][Full Text] [Related]
13. Musings on thermostats. Evans DJ; Searles DJ; Williams SR J Chem Phys; 2010 Sep; 133(10):104106. PubMed ID: 20849163 [TBL] [Abstract][Full Text] [Related]
14. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. Basconi JE; Shirts MR J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973 [TBL] [Abstract][Full Text] [Related]
15. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats. Mor A; Ziv G; Levy Y J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022 [TBL] [Abstract][Full Text] [Related]
16. Generalization of Nose and Nose-hoover isothermal dynamics. Branka AC; Wojciechowski KW Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3281-92. PubMed ID: 11088826 [TBL] [Abstract][Full Text] [Related]
17. A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics. Zhang Z; Liu X; Chen Z; Zheng H; Yan K; Liu J J Chem Phys; 2017 Jul; 147(3):034109. PubMed ID: 28734283 [TBL] [Abstract][Full Text] [Related]
18. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Yong X; Zhang LT J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156 [TBL] [Abstract][Full Text] [Related]
19. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint. Bright JN; Evans DJ; Searles DJ J Chem Phys; 2005 May; 122(19):194106. PubMed ID: 16161562 [TBL] [Abstract][Full Text] [Related]
20. Ergodicity of a thermostat family of the Nosé-Hoover type. Watanabe H; Kobayashi H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040102. PubMed ID: 17500844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]