These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24527909)

  • 1. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems.
    Gelin MF; Bondarev IV; Meliksetyan AV
    J Chem Phys; 2014 Feb; 140(6):064301. PubMed ID: 24527909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymptotic Entanglement Sudden Death in Two Atoms with Dipole-Dipole and Ising Interactions Coupled to a Radiation Field at Non-Zero Detuning.
    Sadiek G; Al-Dress W; Shaglel S; Elhag H
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34070139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-DeschĂȘnes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entanglement in spatially inhomogeneous many-fermion systems.
    França VV; Capelle K
    Phys Rev Lett; 2008 Feb; 100(7):070403. PubMed ID: 18352528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system.
    Bai CH; Wang DY; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Sep; 6():33404. PubMed ID: 27624534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum entanglement via optical control of atom-atom interactions.
    Lukin MD; Hemmer PR
    Phys Rev Lett; 2000 Mar; 84(13):2818-21. PubMed ID: 11018950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical selectivity in optically dense media driven by optimized Gaussian-type ultrashort pulse pairs.
    Xu H; Zeng H
    Opt Lett; 2005 May; 30(10):1198-200. PubMed ID: 15943308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system.
    Singh MR
    Nanotechnology; 2013 Mar; 24(12):125701. PubMed ID: 23459222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement-induced entanglement for excitation stored in remote atomic ensembles.
    Chou CW; de Riedmatten H; Felinto D; Polyakov SV; van Enk SJ; Kimble HJ
    Nature; 2005 Dec; 438(7069):828-32. PubMed ID: 16341008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement of atomic qubits using an optical frequency comb.
    Hayes D; Matsukevich DN; Maunz P; Hucul D; Quraishi Q; Olmschenk S; Campbell W; Mizrahi J; Senko C; Monroe C
    Phys Rev Lett; 2010 Apr; 104(14):140501. PubMed ID: 20481925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2009 Jun; 20(22):225401. PubMed ID: 19436085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics.
    Li WA; Wei LF
    Opt Express; 2012 Jun; 20(12):13440-50. PubMed ID: 22714371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum entanglement between electronic and vibrational degrees of freedom in molecules.
    McKemmish LK; McKenzie RH; Hush NS; Reimers JR
    J Chem Phys; 2011 Dec; 135(24):244110. PubMed ID: 22225147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of multipartite entanglement for one photon shared among four optical modes.
    Papp SB; Choi KS; Deng H; Lougovski P; van Enk SJ; Kimble HJ
    Science; 2009 May; 324(5928):764-8. PubMed ID: 19423821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave-Particle-Entanglement-Ignorance Complementarity for General Bipartite Systems.
    Wu W; Wang J
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states.
    Han JX; Hu Y; Jin Y; Zhang GF
    J Chem Phys; 2016 Apr; 144(13):134308. PubMed ID: 27059571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes.
    Charlier JC; Arnaud L; Avilov IV; Delgado M; Demoisson F; Espinosa EH; Ewels CP; Felten A; Guillot J; Ionescu R; Leghrib R; Llobet E; Mansour A; Migeon HN; Pireaux JJ; Reniers F; Suarez-Martinez I; Watson GE; Zanolli Z
    Nanotechnology; 2009 Sep; 20(37):375501. PubMed ID: 19706940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.