These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24527913)

  • 1. The antimony-group 11 chemical bond: dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb.
    Carta V; Ciccioli A; Gigli G
    J Chem Phys; 2014 Feb; 140(6):064305. PubMed ID: 24527913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and computational investigation of the group 11-group 2 diatomic molecules: first determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species.
    Ciccioli A; Gigli G; Lauricella M
    J Chem Phys; 2012 May; 136(18):184306. PubMed ID: 22583286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Si-Sn chemical bond: an integrated thermochemical and quantum mechanical study of the SiSn diatomic molecule and small Si-Sn clusters.
    Ciccioli A; Gigli G; Meloni G
    Chemistry; 2009 Sep; 15(37):9543-60. PubMed ID: 19685534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dissociation energy of the new diatomic molecules SiPb and GePb.
    Ciccioli A; Gigli G; Meloni G; Testani E
    J Chem Phys; 2007 Aug; 127(5):054303. PubMed ID: 17688336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The uncertain bond energy of the NaAu molecule: experimental redetermination and coupled cluster calculations.
    Ciccioli A; Gigli G
    J Phys Chem A; 2013 Jun; 117(23):4956-62. PubMed ID: 23679072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH).
    Lo PK; Lau KC
    J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+).
    Lau KC; Pan Y; Lam CS; Huang H; Chang YC; Luo Z; Shi X; Ng CY
    J Chem Phys; 2013 Mar; 138(9):094302. PubMed ID: 23485289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).
    Lau KC; Chang YC; Lam CS; Ng CY
    J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules.
    Cheng L; Gauss J; Ruscic B; Armentrout PB; Stanton JF
    J Chem Theory Comput; 2017 Mar; 13(3):1044-1056. PubMed ID: 28080054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The AuSc, AuTi, and AuFe molecules: Determination of the bond energies by Knudsen effusion mass spectrometry experiments combined with ab initio calculations.
    Lucci E; Giarrusso S; Gigli G; Ciccioli A
    J Chem Phys; 2022 Aug; 157(8):084303. PubMed ID: 36049983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions.
    Peterson KA; Shepler BC; Figgen D; Stoll H
    J Phys Chem A; 2006 Dec; 110(51):13877-83. PubMed ID: 17181347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mass spectrometric and density functional study of the intermetallic molecules AuBe, AuMg, and AuCa.
    Balducci G; Ciccioli A; Gigli G
    J Chem Phys; 2004 Oct; 121(16):7748-55. PubMed ID: 15485236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron affinity of NO.
    Arrington CA; Dunning TH; Woon DE
    J Phys Chem A; 2007 Nov; 111(44):11185-8. PubMed ID: 17944447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals.
    Lau KC; Ng CY
    J Chem Phys; 2006 Jan; 124(4):044323. PubMed ID: 16460178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of singlet ground and low-lying electronic excited states of phosphaethyne and isophosphaethyne.
    Ingels JB; Turney JM; Richardson NA; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2006 Sep; 125(10):104306. PubMed ID: 16999525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bond dissociation energies in second-row compounds.
    Grant DJ; Matus MH; Switzer JR; Dixon DA; Francisco JS; Christe KO
    J Phys Chem A; 2008 Apr; 112(14):3145-56. PubMed ID: 18351757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predissociation Measurements of Bond Dissociation Energies.
    Morse MD
    Acc Chem Res; 2019 Jan; 52(1):119-126. PubMed ID: 30596416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond dissociation energies of diatomic transition metal selenides: ScSe, YSe, RuSe, OsSe, CoSe, RhSe, IrSe, and PtSe.
    Sorensen JJ; Tieu E; Morse MD
    J Chem Phys; 2020 Mar; 152(12):124305. PubMed ID: 32241137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cis-cis and trans-perp HOONO: action spectroscopy and isomerization kinetics.
    Fry JL; Nizkorodov SA; Okumura M; Roehl CM; Francisco JS; Wennberg PO
    J Chem Phys; 2004 Jul; 121(3):1432-48. PubMed ID: 15260688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.