These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 24527939)
21. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Adolphs J; Renger T Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264 [TBL] [Abstract][Full Text] [Related]
22. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer. Fokas AS; Cole DJ; Chin AW Photosynth Res; 2014 Dec; 122(3):275-92. PubMed ID: 25034014 [TBL] [Abstract][Full Text] [Related]
23. Open quantum system parameters for light harvesting complexes from molecular dynamics. Wang X; Ritschel G; Wüster S; Eisfeld A Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495 [TBL] [Abstract][Full Text] [Related]
24. The fate of the triplet excitations in the Fenna-Matthews-Olson complex. Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694 [TBL] [Abstract][Full Text] [Related]
25. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum. He G; Niedzwiedzki DM; Orf GS; Zhang H; Blankenship RE J Phys Chem B; 2015 Jul; 119(26):8321-9. PubMed ID: 26061391 [TBL] [Abstract][Full Text] [Related]
26. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969 [TBL] [Abstract][Full Text] [Related]
27. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC. Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269 [TBL] [Abstract][Full Text] [Related]
28. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. Maćkowski S; Czechowski N; Ashraf KU; Szalkowski M; Lokstein H; Cogdell RJ; Kowalska D FEBS Lett; 2016 Aug; 590(16):2558-65. PubMed ID: 27406896 [TBL] [Abstract][Full Text] [Related]
29. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540 [TBL] [Abstract][Full Text] [Related]
30. QM/MM modeling of environmental effects on electronic transitions of the FMO complex. Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507 [TBL] [Abstract][Full Text] [Related]
31. A stochastic reorganizational bath model for electronic energy transfer. Fujita T; Huh J; Aspuru-Guzik A J Chem Phys; 2014 Jun; 140(24):244103. PubMed ID: 24985614 [TBL] [Abstract][Full Text] [Related]
32. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318 [TBL] [Abstract][Full Text] [Related]
33. Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Shim S; Rebentrost P; Valleau S; Aspuru-Guzik A Biophys J; 2012 Feb; 102(3):649-60. PubMed ID: 22325289 [TBL] [Abstract][Full Text] [Related]
34. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
35. On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. Valleau S; Eisfeld A; Aspuru-Guzik A J Chem Phys; 2012 Dec; 137(22):224103. PubMed ID: 23248983 [TBL] [Abstract][Full Text] [Related]
36. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. Huo P; Coker DF J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214 [TBL] [Abstract][Full Text] [Related]
37. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794 [TBL] [Abstract][Full Text] [Related]
38. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study. Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987 [TBL] [Abstract][Full Text] [Related]
39. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. Hu Z; Liu Z; Sun X J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977 [TBL] [Abstract][Full Text] [Related]
40. Relation between Dephasing Time and Energy Gap Fluctuations in Biomolecular Systems. Mallus MI; Aghtar M; Chandrasekaran S; Lüdemann G; Elstner M; Kleinekathöfer U J Phys Chem Lett; 2016 Apr; 7(7):1102-8. PubMed ID: 26950038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]