These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24528010)

  • 1. Identification of a potential anticancer target of danshensu by inverse docking.
    Chen SJ; Ren JL
    Asian Pac J Cancer Prev; 2014; 15(1):111-6. PubMed ID: 24528010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.
    Liu X; Ouyang S; Yu B; Liu Y; Huang K; Gong J; Zheng S; Li Z; Li H; Jiang H
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W609-14. PubMed ID: 20430828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
    Gaillard T
    J Chem Inf Model; 2018 Aug; 58(8):1697-1706. PubMed ID: 29989806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A potential target of Tanshinone IIA for acute promyelocytic leukemia revealed by inverse docking and drug repurposing.
    Chen SJ
    Asian Pac J Cancer Prev; 2014; 15(10):4301-5. PubMed ID: 24935388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.
    Wang X; Shen Y; Wang S; Li S; Zhang W; Liu X; Lai L; Pei J; Li H
    Nucleic Acids Res; 2017 Jul; 45(W1):W356-W360. PubMed ID: 28472422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDock: A Suite for Molecular Inverse Docking and Target Prediction.
    Ma Z; Zou X
    Methods Mol Biol; 2021; 2266():313-322. PubMed ID: 33759135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program.
    Beato C; Beccari AR; Cavazzoni C; Lorenzi S; Costantino G
    J Chem Inf Model; 2013 Jun; 53(6):1503-17. PubMed ID: 23590204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facing the challenges of structure-based target prediction by inverse virtual screening.
    Schomburg KT; Bietz S; Briem H; Henzler AM; Urbaczek S; Rarey M
    J Chem Inf Model; 2014 Jun; 54(6):1676-86. PubMed ID: 24851945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using AutoDock for ligand-receptor docking.
    Morris GM; Huey R; Olson AJ
    Curr Protoc Bioinformatics; 2008 Dec; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Performance of Several Docking Programs at Reproducing Protein-Macrolide-Like Crystal Structures.
    Castro-Alvarez A; Costa AM; Vilarrasa J
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target fishing of glycopentalone using integrated inverse docking and reverse pharmacophore mapping approach.
    Gurung AB; Ali MA; Bhattacharjee A; Al-Anazi KM; Farah MA; Al-Hemaid FM; Abou-Tarboush FM; Lee J; Kim SY; Al-Anazi FS
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration.
    Hassan NM; Alhossary AA; Mu Y; Kwoh CK
    Sci Rep; 2017 Nov; 7(1):15451. PubMed ID: 29133831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.
    Namasivayam V; Günther R
    Chem Biol Drug Des; 2007 Dec; 70(6):475-84. PubMed ID: 17986206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2.
    Kadukova M; Grudinin S
    J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.