These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24528282)

  • 1. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
    Ballester PJ; Schreyer A; Blundell TL
    J Chem Inf Model; 2014 Mar; 54(3):944-55. PubMed ID: 24528282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.
    Ballester PJ; Mitchell JB
    Bioinformatics; 2010 May; 26(9):1169-75. PubMed ID: 20236947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2014 Aug; 15(1):291. PubMed ID: 25159129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scoring functions for prediction of protein-ligand interactions.
    Wang JC; Lin JH
    Curr Pharm Des; 2013; 19(12):2174-82. PubMed ID: 23016847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-based scoring functions in drug design: 2. Can the knowledge base be enriched?
    Shen Q; Xiong B; Zheng M; Luo X; Luo C; Liu X; Du Y; Li J; Zhu W; Shen J; Jiang H
    J Chem Inf Model; 2011 Feb; 51(2):386-97. PubMed ID: 21192670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions.
    Huang SY; Zou X
    J Chem Inf Model; 2010 Feb; 50(2):262-73. PubMed ID: 20088605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction.
    Cheng T; Liu Z; Wang R
    BMC Bioinformatics; 2010 Apr; 11():193. PubMed ID: 20398404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions.
    Wang DD; Zhu M; Yan H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-ligand binding affinities using multiple instance learning.
    Teramoto R; Kashima H
    J Mol Graph Model; 2010 Nov; 29(3):492-7. PubMed ID: 20965757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.