These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24528587)

  • 1. Exact computation of the distribution of likelihood ratios with forensic applications.
    Dørum G; Bleka Ø; Gill P; Haned H; Snipen L; Sæbø S; Egeland T
    Forensic Sci Int Genet; 2014 Mar; 9():93-101. PubMed ID: 24528587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CEESIt: A computational tool for the interpretation of STR mixtures.
    Swaminathan H; Garg A; Grgicak CM; Medard M; Lun DS
    Forensic Sci Int Genet; 2016 May; 22():149-160. PubMed ID: 26946255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient computations with the likelihood ratio distribution.
    Kruijver M
    Forensic Sci Int Genet; 2015 Jan; 14():116-24. PubMed ID: 25450782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of DNA-based identification software by computation of pedigree likelihood ratios.
    Slooten K
    Forensic Sci Int Genet; 2011 Aug; 5(4):308-15. PubMed ID: 20727843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model.
    Haned H; Benschop CCG; Gill PD; Sijen T
    Forensic Sci Int Genet; 2015 May; 16():17-25. PubMed ID: 25485478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying contributors of DNA mixtures by means of quantitative information of STR typing.
    Tvedebrink T; Eriksen PS; Mogensen HS; Morling N
    J Comput Biol; 2012 Jul; 19(7):887-902. PubMed ID: 21210742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assessment of the information content of likelihood ratios derived from complex mixtures.
    Marsden CD; Rudin N; Inman K; Lohmueller KE
    Forensic Sci Int Genet; 2016 May; 22():64-72. PubMed ID: 26851613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exclusion probabilities and likelihood ratios with applications to mixtures.
    Slooten KJ; Egeland T
    Int J Legal Med; 2016 Jan; 130(1):39-57. PubMed ID: 26160753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale validation of NOCIt's a posteriori probability of the number of contributors and its integration into forensic interpretation pipelines.
    Grgicak CM; Karkar S; Yearwood-Garcia X; Alfonse LE; Duffy KR; Lun DS
    Forensic Sci Int Genet; 2020 Jul; 47():102296. PubMed ID: 32339916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting DNA mixtures with the presence of relatives.
    Hu YQ; Fung WK
    Int J Legal Med; 2003 Feb; 117(1):39-45. PubMed ID: 12592594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA mixture genotyping by probabilistic computer interpretation of binomially-sampled laser captured cell populations: combining quantitative data for greater identification information.
    Ballantyne J; Hanson EK; Perlin MW
    Sci Justice; 2013 Jun; 53(2):103-14. PubMed ID: 23601717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture.
    Haned H; Pène L; Sauvage F; Pontier D
    Forensic Sci Int Genet; 2011 Aug; 5(4):281-4. PubMed ID: 20488773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considering relatives when assessing the evidential strength of mixed DNA profiles.
    Taylor D; Bright JA; Buckleton J
    Forensic Sci Int Genet; 2014 Nov; 13():259-63. PubMed ID: 25259769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculating likelihood ratios for a mixed DNA profile when a contribution from a genetic relative of a suspect is proposed.
    Puch-Solis R; Pope S; Evett I
    Sci Justice; 2010 Dec; 50(4):205-9. PubMed ID: 21075300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate assessment of the weight of evidence for DNA mixtures by integrating the likelihood ratio.
    Slooten K
    Forensic Sci Int Genet; 2017 Mar; 27():1-16. PubMed ID: 27914277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Database extraction strategies for low-template evidence.
    Bleka Ø; Dørum G; Haned H; Gill P
    Forensic Sci Int Genet; 2014 Mar; 9():134-41. PubMed ID: 24528591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A top-down approach to DNA mixtures.
    Slooten K
    Forensic Sci Int Genet; 2020 May; 46():102250. PubMed ID: 32169810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting forensic DNA profiling evidence without specifying the number of contributors.
    Taylor D; Bright JA; Buckleton J
    Forensic Sci Int Genet; 2014 Nov; 13():269-80. PubMed ID: 25261845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles.
    Inman K; Rudin N; Cheng K; Robinson C; Kirschner A; Inman-Semerau L; Lohmueller KE
    BMC Bioinformatics; 2015 Sep; 16():298. PubMed ID: 26384762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of random match probability calculations to mixed STR profiles.
    Bille T; Bright JA; Buckleton J
    J Forensic Sci; 2013 Mar; 58(2):474-85. PubMed ID: 23425220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.