These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
823 related articles for article (PubMed ID: 24528707)
41. The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels. Singh B; Chauhan GS; Sharma DK; Kant A; Gupta I; Chauhan N Int J Pharm; 2006 Nov; 325(1-2):15-25. PubMed ID: 16844329 [TBL] [Abstract][Full Text] [Related]
42. Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Mohd Amin MC; Ahmad N; Pandey M; Jue Xin C Drug Dev Ind Pharm; 2014 Oct; 40(10):1340-9. PubMed ID: 23875787 [TBL] [Abstract][Full Text] [Related]
44. Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of cross-linking agent on interpenetrating polymer network properties. Hamcerencu M; Desbrieres J; Popa M; Riess G Biomacromolecules; 2009 Jul; 10(7):1911-22. PubMed ID: 19499889 [TBL] [Abstract][Full Text] [Related]
45. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson's disease. Ren Y; Zhao X; Liang X; Ma PX; Guo B Int J Biol Macromol; 2017 Dec; 105(Pt 1):1079-1087. PubMed ID: 28746885 [TBL] [Abstract][Full Text] [Related]
46. pH-sensitive polyelectrolyte complex micelles assembled from CS-g-PNIPAM and ALG-g-P(NIPAM-co-NVP) for drug delivery. Li G; Song S; Zhang T; Qi M; Liu J Int J Biol Macromol; 2013 Nov; 62():203-10. PubMed ID: 24001568 [TBL] [Abstract][Full Text] [Related]
47. γ-Irradiated chitosan based injectable hydrogels for controlled release of drug (Montelukast sodium). Hafeez S; Islam A; Gull N; Ali A; Khan SM; Zia S; Anwar K; Khan SU; Jamil T Int J Biol Macromol; 2018 Jul; 114():890-897. PubMed ID: 29458102 [TBL] [Abstract][Full Text] [Related]
48. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Yang Y; Liu Y; Chen S; Cheong KL; Teng B Carbohydr Polym; 2020 Oct; 246():116617. PubMed ID: 32747257 [TBL] [Abstract][Full Text] [Related]
49. Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Campbell SB; Patenaude M; Hoare T Biomacromolecules; 2013 Mar; 14(3):644-53. PubMed ID: 23410094 [TBL] [Abstract][Full Text] [Related]
50. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740 [TBL] [Abstract][Full Text] [Related]
51. Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid. Milašinović N; Knežević-Jugović Z; Milosavljević N; Filipović J; Kalagasidis Krušić M Int J Pharm; 2012 Oct; 436(1-2):332-40. PubMed ID: 22759642 [TBL] [Abstract][Full Text] [Related]
52. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Samanta HS; Ray SK Carbohydr Polym; 2014 Jan; 99():666-78. PubMed ID: 24274557 [TBL] [Abstract][Full Text] [Related]
53. Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. Jiang Y; Wu Y; Huo Y J Biomater Sci Polym Ed; 2015; 26(14):917-30. PubMed ID: 26146984 [TBL] [Abstract][Full Text] [Related]
54. Polysaccharide based hydrogels as controlled drug delivery system for GIT cancer. Singh B; Bala R Int J Biol Macromol; 2014 Apr; 65():524-33. PubMed ID: 24530332 [TBL] [Abstract][Full Text] [Related]
55. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Yang J; Chen J; Pan D; Wan Y; Wang Z Carbohydr Polym; 2013 Jan; 92(1):719-25. PubMed ID: 23218359 [TBL] [Abstract][Full Text] [Related]
56. Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Yu R; Cornette de Saint-Cyr L; Soussan L; Barboiu M; Li S Int J Biol Macromol; 2021 Jan; 167():1146-1155. PubMed ID: 33189749 [TBL] [Abstract][Full Text] [Related]
57. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. Abdel-Bar HM; Abdel-Reheem AY; Osman R; Awad GA; Mortada N Int J Pharm; 2014 Dec; 477(1-2):623-30. PubMed ID: 25445973 [TBL] [Abstract][Full Text] [Related]
58. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Singh NK; Lee DS J Control Release; 2014 Nov; 193():214-27. PubMed ID: 24815421 [TBL] [Abstract][Full Text] [Related]
59. Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles. Ghaemy M; Naseri M Carbohydr Polym; 2012 Oct; 90(3):1265-72. PubMed ID: 22939340 [TBL] [Abstract][Full Text] [Related]
60. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release. Qu J; Zhao X; Ma PX; Guo B Acta Biomater; 2018 May; 72():55-69. PubMed ID: 29555459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]