These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24529203)

  • 1. A complementary low-cost method for broadband noise reduction in hearing aids for medium to high SNR levels.
    Holsbach Costa M
    Comput Biol Med; 2014 Mar; 46():29-41. PubMed ID: 24529203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time multiband dynamic compression and noise reduction for binaural hearing aids.
    Kollmeier B; Peissig J; Hohmann V
    J Rehabil Res Dev; 1993; 30(1):82-94. PubMed ID: 8263832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of hearing aid signal-processing schemes on acceptable noise levels: perception and prediction.
    Wu YH; Stangl E
    Ear Hear; 2013; 34(3):333-41. PubMed ID: 23334355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing-aids.
    Marques do Carmo D; Costa MH
    Comput Biol Med; 2018 Apr; 95():188-197. PubMed ID: 29505947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of noise, nonlinear processing, and linear filtering on perceived speech quality.
    Arehart KH; Kates JM; Anderson MC
    Ear Hear; 2010 Jun; 31(3):420-36. PubMed ID: 20440116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.
    Chabries DM; Christiansen RW; Brey RH; Robinette MS; Harris RW
    J Rehabil Res Dev; 1987; 24(4):65-74. PubMed ID: 3430391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speech discrimination with an 8-channel compression hearing aid and conventional aids in background of speech-band noise.
    Yund EW; Simon HJ; Efron R
    J Rehabil Res Dev; 1987; 24(4):161-80. PubMed ID: 3430375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of noise suppression on intelligibility: experts' opinions and naive normal-hearing listeners' performance.
    Hilkhuysen GL; Gaubitch N; Huckvale M
    J Speech Lang Hear Res; 2013 Apr; 56(2):404-15. PubMed ID: 23090965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. International Collegium for Rehabilitative Audiology.
    Dreschler WA; Verschuure H; Ludvigsen C; Westermann S
    Audiology; 2001; 40(3):148-57. PubMed ID: 11465297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in speech intelligibility in noise employing an adaptive filter with normal and hearing-impaired subjects.
    Brey RH; Robinette MS; Chabries DM; Christiansen RW
    J Rehabil Res Dev; 1987; 24(4):75-86. PubMed ID: 3430392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and prediction of the acceptable noise level for single-microphone noise reduction algorithms.
    Fredelake S; Holube I; Schlueter A; Hansen M
    Int J Audiol; 2012 Apr; 51(4):299-308. PubMed ID: 22316007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicenter evaluation of signal enhancement algorithms for hearing aids.
    Luts H; Eneman K; Wouters J; Schulte M; Vormann M; Buechler M; Dillier N; Houben R; Dreschler WA; Froehlich M; Puder H; Grimm G; Hohmann V; Leijon A; Lombard A; Mauler D; Spriet A
    J Acoust Soc Am; 2010 Mar; 127(3):1491-505. PubMed ID: 20329849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids.
    May T; Kowalewski B; Dau T
    Trends Hear; 2018; 22():2331216518790903. PubMed ID: 30117366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison between the first-fit settings of two multichannel digital signal-processing strategies: music quality ratings and speech-in-noise scores.
    Higgins P; Searchfield G; Coad G
    Am J Audiol; 2012 Jun; 21(1):13-21. PubMed ID: 22361320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of steady state gain reduction produced by amplitude modulation based noise reduction in digital hearing aids.
    Hoetink AE; Körössy L; Dreschler WA
    Int J Audiol; 2009; 48(7):444-55. PubMed ID: 19925331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feed forward adaptive canceller to reduce the occlusion effect in hearing aids.
    Borges RC; Costa MH
    Comput Biol Med; 2016 Dec; 79():266-275. PubMed ID: 27835830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of feedback reduction techniques in hearing aids based on physical performance measures.
    Spriet A; Moonen M; Wouters J
    J Acoust Soc Am; 2010 Sep; 128(3):1245-61. PubMed ID: 20815460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual effects of noise reduction with respect to personal preference, speech intelligibility, and listening effort.
    Brons I; Houben R; Dreschler WA
    Ear Hear; 2013; 34(1):29-41. PubMed ID: 22874643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.