BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 24529470)

  • 21. Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee.
    Dabiri Y; Li LP
    Med Eng Phys; 2013 Nov; 35(11):1591-8. PubMed ID: 23764429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage.
    Gastaldi D; Taffetani M; Raiteri R; Vena P
    Comput Methods Biomech Biomed Engin; 2018 Aug; 21(11):635-644. PubMed ID: 30428711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint.
    Vaziri A; Nayeb-Hashemi H; Singh A; Tafti BA
    Ann Biomed Eng; 2008 Aug; 36(8):1335-44. PubMed ID: 18496753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Anatomy and biomechanics of the meniscus of the knee joint].
    Kummer B
    Langenbecks Arch Chir; 1987; 372():241-6. PubMed ID: 3431241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour.
    Meakin JR; Shrive NG; Frank CB; Hart DA
    Knee; 2003 Mar; 10(1):33-41. PubMed ID: 12649024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Articular contact in a three-dimensional model of the knee.
    Blankevoort L; Kuiper JH; Huiskes R; Grootenboer HJ
    J Biomech; 1991; 24(11):1019-31. PubMed ID: 1761580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics.
    Peña E; Calvo B; Martínez MA; Palanca D; Doblaré M
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):498-507. PubMed ID: 15836937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.
    Pierce DM; Ricken T; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1344-61. PubMed ID: 22764882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear analysis of intervertebral disk under dynamic load.
    Natali A; Meroi E
    J Biomech Eng; 1990 Aug; 112(3):358-63. PubMed ID: 2214720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Analog reconstruction of posterolateral complex by the finite element].
    Liu X; Wang X; Lü J; Yuan J; Pu Y; Liu X; Wu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1310-4. PubMed ID: 23230663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods.
    Yao J; Funkenbusch PD; Snibbe J; Maloney M; Lerner AL
    J Biomech Eng; 2006 Jun; 128(3):399-408. PubMed ID: 16706589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen R; Huiskes R
    Med Eng Phys; 2005 Dec; 27(10):810-26. PubMed ID: 16287601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A finite deformation theory for cartilage and other soft hydrated connective tissues--I. Equilibrium results.
    Kwan MK; Lai WM; Mow VC
    J Biomech; 1990; 23(2):145-55. PubMed ID: 2312519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.