BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 24529470)

  • 41. A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative.
    Paz A; Orozco GA; Tanska P; García JJ; Korhonen RK; Mononen ME
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(11):1353-1367. PubMed ID: 36062938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A numerical model of the load transmission in the tibio-femoral contact area.
    Schreppers GJ; Sauren AA; Huson A
    Proc Inst Mech Eng H; 1990; 204(1):53-9. PubMed ID: 2353993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches.
    Imeni M; Seyfi B; Fatouraee N; Samani A
    Biomech Model Mechanobiol; 2020 Dec; 19(6):1979-1996. PubMed ID: 32572727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model.
    Baer AE; Laursen TA; Guilak F; Setton LA
    J Biomech Eng; 2003 Feb; 125(1):1-11. PubMed ID: 12661192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique.
    Julkunen P; Korhonen RK; Nissi MJ; Jurvelin JS
    Phys Med Biol; 2008 May; 53(9):2425-38. PubMed ID: 18421123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact: Part 1--Derivation of contact boundary conditions.
    Un K; Spilker RL
    J Biomech Eng; 2006 Feb; 128(1):124-30. PubMed ID: 16532625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression.
    Demers S; Nadeau S; Bouzid AH
    J Biomech Eng; 2016 Apr; 138(4):041004. PubMed ID: 26833355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method.
    Guo H; Maher SA; Spilker RL
    Med Eng Phys; 2013 Sep; 35(9):1313-20. PubMed ID: 23498852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of stress on knee cartilage during kneeling and standing using finite element models.
    Wang Y; Fan Y; Zhang M
    Med Eng Phys; 2014 Apr; 36(4):439-47. PubMed ID: 24508046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Caprine articular, meniscus and intervertebral disc cartilage: an integral analysis of collagen network and chondrocytes.
    Vonk LA; Kroeze RJ; Doulabi BZ; Hoogendoorn RJ; Huang C; Helder MN; Everts V; Bank RA
    Matrix Biol; 2010 Apr; 29(3):209-18. PubMed ID: 20005293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus.
    Danso EK; Honkanen JT; Saarakkala S; Korhonen RK
    J Biomech; 2014 Jan; 47(1):200-6. PubMed ID: 24182695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3-D finite element analysis of the influence of synovial condition in sacroiliac joint on the load transmission in human pelvic system.
    Shi D; Wang F; Wang D; Li X; Wang Q
    Med Eng Phys; 2014 Jun; 36(6):745-53. PubMed ID: 24508529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rigid-body modeling of knee cartilage and meniscus using experimental pressure-strain curves.
    Wilson S; Hausselle J; Guess TM; Gonzalez RV
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):574-584. PubMed ID: 30821502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanobiology of the meniscus.
    McNulty AL; Guilak F
    J Biomech; 2015 Jun; 48(8):1469-78. PubMed ID: 25731738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.