These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24529553)
21. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Yeh HY; Lin TY; Lin CH; Yen BL; Tsai CL; Hsu SH Differentiation; 2013; 86(4-5):171-83. PubMed ID: 24462469 [TBL] [Abstract][Full Text] [Related]
22. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Liu W; Sun Y; He Y; Zhang H; Zheng Y; Yao Y; Zhang Z Int J Mol Med; 2017 Feb; 39(2):317-326. PubMed ID: 28000839 [TBL] [Abstract][Full Text] [Related]
23. Differences in surface marker expression and chondrogenic potential among various tissue-derived mesenchymal cells from elderly patients with osteoarthritis. Alegre-Aguarón E; Desportes P; García-Álvarez F; Castiella T; Larrad L; Martínez-Lorenzo MJ Cells Tissues Organs; 2012; 196(3):231-40. PubMed ID: 22947769 [TBL] [Abstract][Full Text] [Related]
24. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Zhang L; Yuan T; Guo L; Zhang X J Biomed Mater Res A; 2012 Oct; 100(10):2717-25. PubMed ID: 22623365 [TBL] [Abstract][Full Text] [Related]
25. The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel. Merceron C; Portron S; Masson M; Lesoeur J; Fellah BH; Gauthier O; Geffroy O; Weiss P; Guicheux J; Vinatier C Cell Transplant; 2011; 20(10):1575-88. PubMed ID: 21294960 [TBL] [Abstract][Full Text] [Related]
27. Age-dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2. Kanawa M; Igarashi A; Ronald VS; Higashi Y; Kurihara H; Sugiyama M; Saskianti T; Pan H; Kato Y Cytotherapy; 2013 Sep; 15(9):1062-72. PubMed ID: 23800732 [TBL] [Abstract][Full Text] [Related]
29. The comparison of multilineage differentiation of bone marrow and adipose-derived mesenchymal stem cells. Zhu X; Du J; Liu G Clin Lab; 2012; 58(9-10):897-903. PubMed ID: 23163104 [TBL] [Abstract][Full Text] [Related]
30. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Mochizuki T; Muneta T; Sakaguchi Y; Nimura A; Yokoyama A; Koga H; Sekiya I Arthritis Rheum; 2006 Mar; 54(3):843-53. PubMed ID: 16508965 [TBL] [Abstract][Full Text] [Related]
31. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. Huang JI; Kazmi N; Durbhakula MM; Hering TM; Yoo JU; Johnstone B J Orthop Res; 2005 Nov; 23(6):1383-9. PubMed ID: 15936917 [TBL] [Abstract][Full Text] [Related]
32. Metabolic labeling of human bone marrow mesenchymal stem cells for the quantitative analysis of their chondrogenic differentiation. Rocha B; Calamia V; Mateos J; Fernández-Puente P; Blanco FJ; Ruiz-Romero C J Proteome Res; 2012 Nov; 11(11):5350-61. PubMed ID: 22989065 [TBL] [Abstract][Full Text] [Related]
33. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Muraglia A; Cancedda R; Quarto R J Cell Sci; 2000 Apr; 113 ( Pt 7)():1161-6. PubMed ID: 10704367 [TBL] [Abstract][Full Text] [Related]
34. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. Shirasawa S; Sekiya I; Sakaguchi Y; Yagishita K; Ichinose S; Muneta T J Cell Biochem; 2006 Jan; 97(1):84-97. PubMed ID: 16088956 [TBL] [Abstract][Full Text] [Related]
35. Donor-matched functional and molecular characterization of canine mesenchymal stem cells derived from different origins. Ock SA; Maeng GH; Lee YM; Kim TH; Kumar BM; Lee SL; Rho GJ Cell Transplant; 2013; 22(12):2311-21. PubMed ID: 23068964 [TBL] [Abstract][Full Text] [Related]
36. Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad. Carroll SF; Buckley CT; Kelly DJ J Biomech; 2014 Jun; 47(9):2115-21. PubMed ID: 24377681 [TBL] [Abstract][Full Text] [Related]
37. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Wu L; Prins HJ; Helder MN; van Blitterswijk CA; Karperien M Tissue Eng Part A; 2012 Aug; 18(15-16):1542-51. PubMed ID: 22429306 [TBL] [Abstract][Full Text] [Related]
38. Isolation and Cellular Phenotyping of Mesenchymal Stem Cells Derived from Synovial Fluid and Bone Marrow of Minipigs. Lee WJ; Park JS; Jang SJ; Lee SC; Lee H; Lee JH; Rho GJ; Lee SL J Vis Exp; 2016 Jul; (113):. PubMed ID: 27404916 [TBL] [Abstract][Full Text] [Related]
39. Chondrogenic differentiation of human umbilical cord blood-derived multilineage progenitor cells in atelocollagen. Choi YS; Im MW; Kim CS; Lee MH; Noh SE; Lim SM; Kim SL; Cho CG; Kim DI Cytotherapy; 2008; 10(2):165-73. PubMed ID: 18368595 [TBL] [Abstract][Full Text] [Related]
40. Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines. Lo WC; Chen WH; Lin TC; Hwang SM; Zeng R; Hsu WC; Chiang YM; Liu MC; Williams DF; Deng WP Biomaterials; 2013 Jul; 34(20):4739-48. PubMed ID: 23557858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]