These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24529788)

  • 1. On the smell of Composition C-4.
    Kranz W; Kitts K; Strange N; Cummins J; Lotspeich E; Goodpaster J
    Forensic Sci Int; 2014 Mar; 236():157-63. PubMed ID: 24529788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of volatiles from explosive initiators and plastic-bonded explosives (PBX) using headspace solid-phase microextraction coupled with gas chromatography - mass spectrometry (SPME/GC-MS).
    Hecker AJ; Goodpaster JV
    J Forensic Sci; 2024 May; 69(3):847-855. PubMed ID: 38362839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives.
    Furton KG; Myers LJ
    Talanta; 2001 May; 54(3):487-500. PubMed ID: 18968273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer.
    Joshi M; Delgado Y; Guerra P; Lai H; Almirall JR
    Forensic Sci Int; 2009 Jul; 188(1-3):112-8. PubMed ID: 19410393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device.
    DeGreeff LE; Peranich K
    Forensic Sci Int; 2021 Dec; 329():111059. PubMed ID: 34715445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans.
    Lorenzo N; Wan T; Harper RJ; Hsu YL; Chow M; Rose S; Furton KG
    Anal Bioanal Chem; 2003 Aug; 376(8):1212-24. PubMed ID: 12845400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of context specificity in learning: the effects of training context on explosives detection in dogs.
    Gazit I; Goldblatt A; Terkel J
    Anim Cogn; 2005 Jul; 8(3):143-50. PubMed ID: 15449101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Headspace concentrations of explosive vapors in containers designed for canine testing and training: theory, experiment, and canine trials.
    Lotspeich E; Kitts K; Goodpaster J
    Forensic Sci Int; 2012 Jul; 220(1-3):130-4. PubMed ID: 22421324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry.
    Liu H; Wang H; Li C; Wang L; Pan Z; Wang L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing.
    Katilie CJ; DeGreeff LE; Sharpes CE; Best EM; Buckley PE; Gadberry JD; Maughan MN
    J Forensic Sci; 2023 Nov; 68(6):2021-2036. PubMed ID: 37691017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign.
    Petersen JH; Breindahl T
    Food Addit Contam; 1998 Jul; 15(5):600-8. PubMed ID: 9829046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive characterization of commercially available canine training aids.
    Tipple CA; Caldwell PT; Kile BM; Beussman DJ; Rushing B; Mitchell NJ; Whitchurch CJ; Grime M; Stockham R; Eckenrode BA
    Forensic Sci Int; 2014 Sep; 242():242-254. PubMed ID: 25093917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of cadaver dogs in locating scattered, scavenged human remains: preliminary field test results.
    Komar D
    J Forensic Sci; 1999 Mar; 44(2):405-8. PubMed ID: 10097372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives.
    Li X; Zeng Z; Zeng Y
    Talanta; 2007 Jun; 72(4):1581-5. PubMed ID: 19071800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.