These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24529900)

  • 1. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells.
    Reynolds NH; Ronan W; Dowling EP; Owens P; McMeeking RM; McGarry JP
    Biomaterials; 2014 Apr; 35(13):4015-25. PubMed ID: 24529900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells.
    Ronan W; Deshpande VS; McMeeking RM; McGarry JP
    J Mech Behav Biomed Mater; 2012 Oct; 14():143-57. PubMed ID: 23026692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.
    Ronan W; Deshpande VS; McMeeking RM; McGarry JP
    Biomech Model Mechanobiol; 2014 Apr; 13(2):417-35. PubMed ID: 23775256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single cell active force generation under dynamic loading - Part II: Active modelling insights.
    Reynolds NH; McGarry JP
    Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation.
    Dowling EP; Ronan W; Ofek G; Deshpande VS; McMeeking RM; Athanasiou KA; McGarry JP
    J R Soc Interface; 2012 Dec; 9(77):3469-79. PubMed ID: 22809850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spreading and contractility on cell detachment.
    Dowling EP; McGarry JP
    Ann Biomed Eng; 2014 May; 42(5):1037-48. PubMed ID: 24356853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics and deformation of the nucleus in micropipette aspiration experiment.
    Vaziri A; Mofrad MR
    J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional finite element model of an adherent eukaryotic cell.
    McGarry JG; Prendergast PJ
    Eur Cell Mater; 2004 Apr; 7():27-33; discussion 33-4. PubMed ID: 15095253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The relationship between phenotype transformation and biomechanical properties of detrusor smooth muscle cell subjected to the cyclic mechanical stretch].
    Gong Y; Song B; Jin XY; Xiong EQ
    Zhonghua Wai Ke Za Zhi; 2003 Dec; 41(12):901-5. PubMed ID: 14728829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound induced strain cytoskeleton rearrangement: An experimental and simulation study.
    Samandari M; Abrinia K; Mokhtari-Dizaji M; Tamayol A
    J Biomech; 2017 Jul; 60():39-47. PubMed ID: 28757237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study.
    Tsukamoto S; Asakawa T; Kimura S; Takesue N; Mofrad MRK; Sakamoto N
    J Biomech; 2021 Apr; 119():110292. PubMed ID: 33667883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis.
    Unterberger MJ; Schmoller KM; Wurm C; Bausch AR; Holzapfel GA
    Acta Biomater; 2013 Jul; 9(7):7343-53. PubMed ID: 23523535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure.
    Pravincumar P; Bader DL; Knight MM
    PLoS One; 2012; 7(9):e43938. PubMed ID: 22984454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch.
    Abdalrahman T; Davies NH; Franz T
    Med Biol Eng Comput; 2021 Sep; 59(9):1933-1944. PubMed ID: 34392447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.