These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24529900)

  • 21. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.
    Fallqvist B; Kroon M
    Biomech Model Mechanobiol; 2013 Apr; 12(2):373-82. PubMed ID: 22623110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry.
    Li Q; Kumar A; Makhija E; Shivashankar GV
    Biomaterials; 2014 Jan; 35(3):961-9. PubMed ID: 24183171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of the mechanical response of cells on micropost substrates.
    Ronan W; Pathak A; Deshpande VS; McMeeking RM; McGarry JP
    J Biomech Eng; 2013 Oct; 135(10):101012. PubMed ID: 23896758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells.
    Nava MM; Raimondi MT; Pietrabissa R
    Biomech Model Mechanobiol; 2014 Oct; 13(5):929-43. PubMed ID: 24549395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.
    Bai G; Li Y; Chu HK; Wang K; Tan Q; Xiong J; Sun D
    Biomed Eng Online; 2017 Apr; 16(1):41. PubMed ID: 28376803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RhoE regulates actin cytoskeleton organization in human periodontal ligament cells under mechanical stress.
    de Araujo RM; Oba Y; Kuroda S; Tanaka E; Moriyama K
    Arch Oral Biol; 2014 Feb; 59(2):187-92. PubMed ID: 24370190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model.
    Tracqui P; Ohayon J
    Acta Biotheor; 2004; 52(4):323-41. PubMed ID: 15520537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A biomechanical model for simulating the deformation of a leukocyte adhered to the surface of a blood vessel under steady shear flow].
    Liu X; Wang X; Huang H; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):30-4. PubMed ID: 12744156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of steady shear flow on the deformation of leukocyte adhered to vascular endothelial surface.
    Liu XH; Wang X; Yin HM
    Space Med Med Eng (Beijing); 2004 Feb; 17(1):7-11. PubMed ID: 15005109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell mechanical assay unveils viscoelastic similarities in normal and neoplastic brain cells.
    Onwudiwe K; Najera J; Holen L; Burchett AA; Rodriguez D; Zarodniuk M; Siri S; Datta M
    Biophys J; 2024 May; 123(9):1098-1105. PubMed ID: 38544410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of actin filaments to the global compressive properties of fibroblasts.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    J Mech Behav Biomed Mater; 2012 Oct; 14():192-8. PubMed ID: 23026698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Continuum-Tensegrity Computational Model for Chondrocyte Biomechanics in AFM Indentation and Micropipette Aspiration.
    Arduino A; Pettenuzzo S; Berardo A; Salomoni VA; Majorana C; Carniel EL
    Ann Biomed Eng; 2022 Dec; 50(12):1911-1922. PubMed ID: 35879583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementing cell contractility in filament-based cytoskeletal models.
    Fallqvist B
    Cytoskeleton (Hoboken); 2016 Feb; 73(2):93-106. PubMed ID: 26899417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensegrity finite element models of mechanical tests of individual cells.
    Bursa J; Lebis R; Holata J
    Technol Health Care; 2012; 20(2):135-50. PubMed ID: 22508025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study.
    Bertaud J; Qin Z; Buehler MJ
    Acta Biomater; 2010 Jul; 6(7):2457-66. PubMed ID: 20102752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelastic properties of the cell nucleus.
    Guilak F; Tedrow JR; Burgkart R
    Biochem Biophys Res Commun; 2000 Mar; 269(3):781-6. PubMed ID: 10720492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.