BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24530501)

  • 1. Competing aggregation pathways for monoclonal antibodies.
    Wu H; Kroe-Barrett R; Singh S; Robinson AS; Roberts CJ
    FEBS Lett; 2014 Mar; 588(6):936-41. PubMed ID: 24530501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration.
    Kim N; Remmele RL; Liu D; Razinkov VI; Fernandez EJ; Roberts CJ
    Biophys Chem; 2013 Feb; 172():26-36. PubMed ID: 23334430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody.
    Liu H; Bulseco GG; Sun J
    Immunol Lett; 2006 Aug; 106(2):144-53. PubMed ID: 16831470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments.
    Vermeer AW; Norde W; van Amerongen A
    Biophys J; 2000 Oct; 79(4):2150-4. PubMed ID: 11023918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions.
    Zhang-van Enk J; Mason BD; Yu L; Zhang L; Hamouda W; Huang G; Liu D; Remmele RL; Zhang J
    Mol Pharm; 2013 Feb; 10(2):619-30. PubMed ID: 23256580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fc domain mediated self-association of an IgG1 monoclonal antibody under a low ionic strength condition.
    Nishi H; Miyajima M; Wakiyama N; Kubota K; Hasegawa J; Uchiyama S; Fukui K
    J Biosci Bioeng; 2011 Oct; 112(4):326-32. PubMed ID: 21783411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of deglycosylation and thermal stress on conformational stability of a full length murine IgG2a monoclonal antibody: observations from molecular dynamics simulations.
    Wang X; Kumar S; Buck PM; Singh SK
    Proteins; 2013 Mar; 81(3):443-60. PubMed ID: 23065923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc.
    Anumula KR
    J Immunol Methods; 2012 Aug; 382(1-2):167-76. PubMed ID: 22683540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of the Fab fragment within the intact antibody.
    Lilie H
    FEBS Lett; 1997 Nov; 417(2):239-42. PubMed ID: 9395304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity.
    Arora J; Hu Y; Esfandiary R; Sathish HA; Bishop SM; Joshi SB; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2016; 8(8):1561-1574. PubMed ID: 27560842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation, pH-induced conformational changes, and thermal unfolding of anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab and Fc fragments.
    Welfle K; Misselwitz R; Hausdorf G; Höhne W; Welfle H
    Biochim Biophys Acta; 1999 Apr; 1431(1):120-31. PubMed ID: 10209285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid IgG4/IgG4 Fc antibodies form upon 'Fab-arm' exchange as demonstrated by SDS-PAGE or size-exclusion chromatography.
    Rispens T; den Bleker TH; Aalberse RC
    Mol Immunol; 2010 Apr; 47(7-8):1592-4. PubMed ID: 20299101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Pressure, Low-Temperature Induced Unfolding and Aggregation of Monoclonal Antibodies: Role of the Fc and Fab Fragments.
    Berger JE; Teixeira SCM; Reed K; Razinkov VI; Sloey CJ; Qi W; Roberts CJ
    J Phys Chem B; 2022 Jun; 126(24):4431-4441. PubMed ID: 35675067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody.
    Arora J; Hickey JM; Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Weis DD; Volkin DB
    MAbs; 2015; 7(3):525-39. PubMed ID: 25875351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined structure of an intact IgG2a monoclonal antibody.
    Harris LJ; Larson SB; Hasel KW; McPherson A
    Biochemistry; 1997 Feb; 36(7):1581-97. PubMed ID: 9048542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cysteinylation of a free cysteine in the Fab region of a recombinant monoclonal IgG1 antibody using Lys-C limited proteolysis coupled with LC/MS analysis.
    Gadgil HS; Bondarenko PV; Pipes GD; Dillon TM; Banks D; Abel J; Kleemann GR; Treuheit MJ
    Anal Biochem; 2006 Aug; 355(2):165-74. PubMed ID: 16828048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of buffer species on the unfolding and the aggregation of humanized IgG.
    Kameoka D; Masuzaki E; Ueda T; Imoto T
    J Biochem; 2007 Sep; 142(3):383-91. PubMed ID: 17646171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma.
    Harris LJ; Larson SB; Hasel KW; Day J; Greenwood A; McPherson A
    Nature; 1992 Nov; 360(6402):369-72. PubMed ID: 1448155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.