BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24530540)

  • 1. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans.
    Shi YY; Li KF; Lin JP; Yang SL; Wei DZ
    J Agric Food Chem; 2015 Jun; 63(22):5492-8. PubMed ID: 26009934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An easy cloning and expression vector system for Gluconobacter oxydans.
    Schleyer U; Bringer-Meyer S; Sahm H
    Int J Food Microbiol; 2008 Jun; 125(1):91-5. PubMed ID: 17976848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of expression vectors for protein production in Gluconobacter oxydans.
    Kallnik V; Meyer M; Deppenmeier U; Schweiger P
    J Biotechnol; 2010 Dec; 150(4):460-5. PubMed ID: 20969898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504.
    Kostner D; Luchterhand B; Junker A; Volland S; Daniel R; Büchs J; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):375-86. PubMed ID: 25267158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis.
    Hu Y; Wan H; Li J; Zhou J
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation.
    Liu D; Ke X; Hu ZC; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 20. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.