These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24530566)

  • 21. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies.
    Ishikawa T; Ito T; Endo R; Nakagawa K; Sawa E; Wakamatsu K
    Biol Pharm Bull; 2010; 33(8):1413-7. PubMed ID: 20686240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.
    Alekseychyk L; Su C; Becker GW; Treuheit MJ; Razinkov VI
    J Biomol Screen; 2014 Oct; 19(9):1290-301. PubMed ID: 25023322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab').
    Roque C; Sheung A; Rahman N; Ausar SF
    Mol Pharm; 2015 Feb; 12(2):562-75. PubMed ID: 25548945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations.
    Saluja A; Badkar AV; Zeng DL; Kalonia DS
    J Pharm Sci; 2007 Dec; 96(12):3181-95. PubMed ID: 17588261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Insights into the Thermal Stability of mAbs with Variable-Temperature Ion-Mobility Mass Spectrometry.
    Pacholarz KJ; Peters SJ; Garlish RA; Henry AJ; Taylor RJ; Humphreys DP; Barran PE
    Chembiochem; 2016 Jan; 17(1):46-51. PubMed ID: 26534882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies.
    Majumder S; Jones MT; Kimmel M; Alphonse Ignatius A
    Pharm Res; 2018 Sep; 35(11):220. PubMed ID: 30255351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics.
    Bansal R; Dhawan S; Chattopadhyay S; Maurya GP; Haridas V; Rathore AS
    Bioconjug Chem; 2017 Oct; 28(10):2549-2559. PubMed ID: 28880521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment.
    Chakroun N; Hilton D; Ahmad SS; Platt GW; Dalby PA
    Mol Pharm; 2016 Feb; 13(2):307-19. PubMed ID: 26692229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of arginine glutamate on the stability of monoclonal antibodies in solution.
    Kheddo P; Tracka M; Armer J; Dearman RJ; Uddin S; van der Walle CF; Golovanov AP
    Int J Pharm; 2014 Oct; 473(1-2):126-33. PubMed ID: 24992318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation stability of a monoclonal antibody during downstream processing.
    Arosio P; Barolo G; Müller-Späth T; Wu H; Morbidelli M
    Pharm Res; 2011 Aug; 28(8):1884-94. PubMed ID: 21448757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass.
    Neergaard MS; Nielsen AD; Parshad H; Van De Weert M
    J Pharm Sci; 2014 Jan; 103(1):115-27. PubMed ID: 24282022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.
    Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates.
    Franey H; Brych SR; Kolvenbach CG; Rajan RS
    Protein Sci; 2010 Sep; 19(9):1601-15. PubMed ID: 20556807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-random conformation of a mouse IgG2a monoclonal antibody at low pH.
    Jiskoot W; Bloemendal M; van Haeringen B; van Grondelle R; Beuvery EC; Herron JN; Crommelin DJ
    Eur J Biochem; 1991 Oct; 201(1):223-32. PubMed ID: 1915367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gauging colloidal and thermal stability in human IgG1-sugar solutions through diffusivity measurements.
    Rubin J; Sharma A; Linden L; Bommarius AS; Behrens SH
    J Phys Chem B; 2014 Mar; 118(11):2803-9. PubMed ID: 24555903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments.
    Benjwal S; Verma S; Röhm KH; Gursky O
    Protein Sci; 2006 Mar; 15(3):635-9. PubMed ID: 16452626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A thermal-cycling method for disaggregating monoclonal antibody oligomers.
    Sadavarte RH; Ghosh R
    J Pharm Sci; 2014 Mar; 103(3):870-8. PubMed ID: 24549731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.