These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24530583)

  • 1. Does road salting confound the recovery of the microcrustacean community in an acidified lake?
    Jensen TC; Meland S; Schartau AK; Walseng B
    Sci Total Environ; 2014 Apr; 478():36-47. PubMed ID: 24530583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Littoral microcrustacean (Cladocera and Copepoda) indicators of acidification in Canadian Shield lakes.
    Walseng B; Yan ND; Schartau AK
    Ambio; 2003 Apr; 32(3):208-13. PubMed ID: 12839197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resilience of epilithic algal assemblages in atmospherically and experimentally acidified boreal lakes.
    Vinebrooke RD; Graham MD; Findlay DL; Turner MA
    Ambio; 2003 Apr; 32(3):196-202. PubMed ID: 12839195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.
    Zhou Q; Driscoll CT; Sullivan TJ
    Sci Total Environ; 2015 Apr; 511():186-94. PubMed ID: 25544337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recovery of crustacean zooplankton from acidification depends on lake type.
    Pilotto F; Walseng B; Jensen TC; Schartau AK
    Glob Chang Biol; 2023 Nov; 29(21):6066-6076. PubMed ID: 37609877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Road Salt Impacts Freshwater Zooplankton at Concentrations below Current Water Quality Guidelines.
    Arnott SE; Celis-Salgado MP; Valleau RE; DeSellas AM; Paterson AM; Yan ND; Smol JP; Rusak JA
    Environ Sci Technol; 2020 Aug; 54(15):9398-9407. PubMed ID: 32597171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.
    Rosfjord CH; Webster KE; Kahl JS; Norton SA; Fernandez IJ; Herlihy AT
    Environ Sci Technol; 2007 Nov; 41(22):7688-93. PubMed ID: 18075075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.
    Kopáček J; Hejzlar J; Kaňa J; Norton SA; Stuchlík E
    Environ Sci Technol; 2015 Mar; 49(5):2895-903. PubMed ID: 25660534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and biological recovery of Lake Saudlandsvatn, a formerly highly acidified lake in southernmost Norway, in response to decreased acid deposition.
    Hesthagen T; Fjellheim A; Schartau AK; Wright RF; Saksgård R; Rosseland BO
    Sci Total Environ; 2011 Jul; 409(15):2908-16. PubMed ID: 21669327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectories of zooplankton recovery in the Little Rock Lake whole-lake acidification experiment.
    Frost TM; Fischer JM; Klug JL; Arnott SE; Montz PK
    Ecol Appl; 2006 Feb; 16(1):353-67. PubMed ID: 16705985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive reversals in acid tolerance in copepods from lakes recovering from historical stress.
    Derry AM; Arnott SE
    Ecol Appl; 2007 Jun; 17(4):1116-26. PubMed ID: 17555222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy.
    Forsius M; Vuorenmaa J; Mannio J; Syri S
    Sci Total Environ; 2003 Jul; 310(1-3):121-32. PubMed ID: 12812736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification.
    Futter MN; Valinia S; Löfgren S; Köhler SJ; Fölster J
    Ambio; 2014; 43 Suppl 1(Suppl 1):77-90. PubMed ID: 25403971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional analysis of the effect of paved roads on sodium and chloride in lakes.
    Kelting DL; Laxson CL; Yerger EC
    Water Res; 2012 May; 46(8):2749-58. PubMed ID: 22406283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor?
    Gray DK; Arnott SE
    Ecol Appl; 2011 Jun; 21(4):1241-56. PubMed ID: 21774427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification.
    Harriman R; Watt AW; Christie AE; Moore DW; McCartney AG; Taylor EM
    Sci Total Environ; 2003 Jul; 310(1-3):101-11. PubMed ID: 12812734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe).
    Vrba J; Kopácek J; Fott J; Kohout L; Nedbalová L; Prazáková M; Soldán T; Schaumburg J
    Sci Total Environ; 2003 Jul; 310(1-3):73-85. PubMed ID: 12812732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition.
    Lento J; Dillon PJ; Somers KM
    Environ Monit Assess; 2012 Dec; 184(12):7175-87. PubMed ID: 22193633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited acid deposition inferred from diatoms during the 20th century - A case study from lakes in the Tatra Mountains.
    Sienkiewicz E; Gąsiorowski M
    J Environ Sci (China); 2018 Feb; 64():92-106. PubMed ID: 29478665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forest die-back modified plankton recovery from acidic stress.
    Vrba J; Kopáček J; Fott J; Nedbalová L
    Ambio; 2014 Mar; 43(2):207-17. PubMed ID: 23729296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.