BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 24530623)

  • 1. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.
    Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J
    J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
    Godard P; Urrestarazu A; Vissers S; Kontos K; Bontempi G; van Helden J; André B
    Mol Cell Biol; 2007 Apr; 27(8):3065-86. PubMed ID: 17308034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1.
    Jun H; Kieselbach T; Jönsson LJ
    BMC Genomics; 2012 Jun; 13():230. PubMed ID: 22681880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of strontium's adsorption by Saccharomyces cerevisiae: Contribution of surface and intracellular uptakes.
    Qiu L; Feng J; Dai Y; Chang S
    Chemosphere; 2019 Jan; 215():15-24. PubMed ID: 30300807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen.
    Airoldi EM; Miller D; Athanasiadou R; Brandt N; Abdul-Rahman F; Neymotin B; Hashimoto T; Bahmani T; Gresham D
    Mol Biol Cell; 2016 Apr; 27(8):1383-96. PubMed ID: 26941329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
    Hernández H; Aranda C; Riego L; González A
    Biochem Biophys Res Commun; 2011 Jan; 404(3):859-64. PubMed ID: 21184740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.
    Fayyad-Kazan M; Feller A; Bodo E; Boeckstaens M; Marini AM; Dubois E; Georis I
    Mol Microbiol; 2016 Jan; 99(2):360-79. PubMed ID: 26419331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation.
    Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae.
    Zhao X; Zou H; Fu J; Chen J; Zhou J; Du G
    Yeast; 2013 Nov; 30(11):437-47. PubMed ID: 23996237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae.
    Georis I; Fayyad-Kazan M; Zaremba E; Vierendeels F; Roovers M; Dubois E
    Yeast; 2022 Sep; 39(9):493-507. PubMed ID: 35942513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation.
    Georis I; Feller A; Vierendeels F; Dubois E
    Mol Cell Biol; 2009 Jul; 29(13):3803-15. PubMed ID: 19380492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast.
    Georis I; Ronsmans A; Vierendeels F; Dubois E
    Yeast; 2024 Apr; 41(4):207-221. PubMed ID: 37357465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
    Boer VM; Tai SL; Vuralhan Z; Arifin Y; Walsh MC; Piper MD; de Winde JH; Pronk JT; Daran JM
    FEMS Yeast Res; 2007 Jun; 7(4):604-20. PubMed ID: 17419774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism.
    Tate JJ; Cooper TG
    J Biol Chem; 2003 Sep; 278(38):36924-33. PubMed ID: 12851403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
    Zhang W; Du G; Zhou J; Chen J
    Microbiol Mol Biol Rev; 2018 Jun; 82(1):. PubMed ID: 29436478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-transcriptional control of the Saccharomyces cerevisiae proteome by 14-3-3 proteins.
    Bruckmann A; Hensbergen PJ; Balog CI; Deelder AM; de Steensma HY; van Heusden GP
    J Proteome Res; 2007 May; 6(5):1689-99. PubMed ID: 17397208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.