These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 24530806)

  • 1. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic epidemic models on contact networks: correlations and unbiological terms.
    Sharkey KJ
    Theor Popul Biol; 2011 Jun; 79(4):115-29. PubMed ID: 21354193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic modeling of nonlinear epidemiology.
    Chen WY; Bokka S
    J Theor Biol; 2005 Jun; 234(4):455-70. PubMed ID: 15808867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIR model with local and global infective contacts: A deterministic approach and applications.
    Maltz A; Fabricius G
    Theor Popul Biol; 2016 Dec; 112():70-79. PubMed ID: 27591977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods.
    Black AJ; McKane AJ; Nunes A; Parisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021922. PubMed ID: 19792166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic SIR model with contact-tracing: large population limits and statistical inference.
    Clémençon S; Tran VC; de Arazoza H
    J Biol Dyn; 2008 Oct; 2(4):392-414. PubMed ID: 22876905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F; Shaw L
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
    Kenah E; Robins JM
    J Theor Biol; 2007 Dec; 249(4):706-22. PubMed ID: 17950362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic effects in a seasonally forced epidemic model.
    Rozhnova G; Nunes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041906. PubMed ID: 21230312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
    Jacobsen KA; Burch MG; Tien JH; Rempała GA
    J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous and discrete SIR-models with spatial distributions.
    Paeng SH; Lee J
    J Math Biol; 2017 Jun; 74(7):1709-1727. PubMed ID: 27796478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the number of recovered individuals in the SIS and SIR stochastic epidemic models.
    Artalejo JR; Economou A; Lopez-Herrero MJ
    Math Biosci; 2010 Nov; 228(1):45-55. PubMed ID: 20801133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A symbolic investigation of superspreaders.
    McCaig C; Begon M; Norman R; Shankland C
    Bull Math Biol; 2011 Apr; 73(4):777-94. PubMed ID: 21181505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective degree network disease models.
    Lindquist J; Ma J; van den Driessche P; Willeboordse FH
    J Math Biol; 2011 Feb; 62(2):143-64. PubMed ID: 20179932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.